Performance analysis of colour descriptors for parquet sorting

In this paper we consider the problem of colour-based sorting hardwood parquet slabs into lots of similar visual appearance. As a basis for the development of an expert system to perform this task, we experimentally investigate and compare the performance of various colour descriptors (i.e.: soft descriptors, percentiles, marginal histograms and 3D histogram), and colour spaces (i.e.: RGB, HSV and CIE Lab). The results show that simple and compact colour descriptors, such as the mean of each colour channel, are as accurate as more complicated features. Likewise, we found no statistically significant difference in the accuracy attainable through the colour spaces considered in the paper. Our experiments also show that most methods are fast enough for real-time processing. The results suggest the use of simple statistical descriptors along with RGB data as the best practice to approach the problem.

[1]  Francesco Bianconi,et al.  Rotation-invariant colour texture classification through multilayer CCR , 2009, Pattern Recognit. Lett..

[2]  W. Kurdthongmee,et al.  Colour classification of rubberwood boards for fingerjoint manufacturing using a SOM neural network and image processing , 2008 .

[3]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[4]  Magnus Johansson,et al.  Automatic parquet block sorting using real-time spectral classification , 1999, Electronic Imaging.

[5]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[6]  Francesco Bianconi,et al.  Automatic classification of granite tiles through colour and texture features , 2012, Expert Syst. Appl..

[7]  Hannu Kauppinen A two stage defect recognition method for parquet slab grading , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[8]  Richard W. Conners,et al.  A machine vision system forautomatically grading hardwood lumber , 1992 .

[9]  Philip A. Araman,et al.  Automated hardwood lumber grading utilizing a multiple sensor machine vision technology , 2003 .

[10]  David A. Clausi,et al.  Sorted random projections for robust rotation-invariant texture classification , 2012, Pattern Recognit..

[11]  Farid García,et al.  Recognition of Mexican banknotes via their color and texture features , 2012, Expert Syst. Appl..

[12]  Ari Visa,et al.  Color-Based Classification of Natural Rock Images Using Classifier Combinations , 2005, SCIA.

[13]  Hassan Basri,et al.  Intelligent computer vision system for segregating recyclable waste papers , 2011, Expert Syst. Appl..

[14]  E. C. Semple,et al.  Detection and sizing visual features in wood using tonal measures and a classification algorithm , 1989, Pattern Recognit..

[15]  Selman Jabo Machine vision for wood defect detection and classification , 2011 .

[16]  Erdogan Köse,et al.  Modelling of colour perception of different age groups using artificial neural networks , 2008, Expert Syst. Appl..

[17]  Matti Pietikäinen,et al.  Visual Inspection of Parquet Slabs by Combining Color and Texture , 2000, MVA.

[18]  Ralph Arnote,et al.  Hong Kong (China) , 1996, OECD/G20 Base Erosion and Profit Shifting Project.

[19]  Raimondo Schettini,et al.  Colorimetric calibration of color scanners by back-propagation , 1995, Pattern Recognit. Lett..

[20]  D. E. Kline,et al.  DIFFERENTIATING DEFECTS IN RED OAK LUMBER BY DISCRIMINANT ANALYSIS USING COLOR, SHAPE, AND DENSITY , 2002 .

[21]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[22]  Po-Chieh Hung,et al.  Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations , 1993, J. Electronic Imaging.

[23]  Georgios S. Paschos,et al.  Perceptually uniform color spaces for color texture analysis: an empirical evaluation , 2001, IEEE Trans. Image Process..

[24]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[25]  Hannu Kauppinen,et al.  COLOR AND TEXTURE BASED WOOD INSPECTION WITH NON-SUPERVISED CLUSTERING , 2001 .

[26]  Matti Pietikäinen,et al.  Accurate color discrimination with classification based on feature distributions , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[27]  Giorgio Baldinelli,et al.  Colour calibration of an artificial vision system for industrialapplications: comparison of different polynomial models , 2011 .

[28]  Pekka Vienonen,et al.  Colour grading of beech parquet blocks by using spectral data , 2002 .

[29]  John C. Hermanson,et al.  A brief review of machine vision in the context of automated wood identification systems , 2011 .

[30]  Anders Lycken Comparison between automatic and manual quality grading of sawn softwood , 2006 .

[31]  Henry R. Kang Computational Color Technology , 2006 .

[32]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[33]  Richard W. Conners,et al.  Identifying and Locating Surface Defects in Wood: Part of an Automated Lumber Processing System , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Olivier Alata,et al.  Choice of a pertinent color space for color texture characterization using parametric spectral analysis , 2011, Pattern Recognit..

[35]  Donald A. Adjeroh,et al.  Comparison of Texture Analysis Schemes Under Nonideal Conditions , 2011, IEEE Transactions on Image Processing.

[36]  Fernando López-García,et al.  Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression , 2008, Pattern Recognit..

[37]  D. Mery,et al.  Color measurement in L ¿ a ¿ b ¿ units from RGB digital images , 2006 .

[38]  André Wagenführ,et al.  Evaluation of colour differences on wood surfaces , 2011, European Journal of Wood and Wood Products.

[39]  Thomas Schnabel,et al.  On the modelling of colour changes of wood surfaces , 2009, European Journal of Wood and Wood Products.

[40]  William R. Mathew,et al.  Color as a Science , 2005 .

[41]  Matti Pietikäinen,et al.  Classification with color and texture: jointly or separately? , 2004, Pattern Recognit..

[42]  Paul Southam,et al.  Theoretical and experimental comparison of different approaches for color texture classification , 2011, J. Electronic Imaging.

[43]  Vincenzo Piuri,et al.  Design of an Automatic Wood Types Classification System by Using Fluorescence Spectra , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[44]  Richard W. Conners,et al.  A real-time algorithm for color sorting edge-glued panel parts , 1997, Proceedings of International Conference on Image Processing.

[45]  David A. Butler,et al.  An evaluation of color spaces fordetecting defects in Douglas-fir veneer , 1992 .

[46]  Paul F. Whelan,et al.  Experiments in colour texture analysis , 2001, Pattern Recognit. Lett..

[47]  Joseph Ciccotelli,et al.  Applications of artificial vision in the wood industry , 1992 .

[48]  Henrik Andersson,et al.  Wood defect classification based on image analysis and support vector machines , 2010, Wood Science and Technology.

[49]  Richard W. Conners,et al.  A Machine Vision System for Automatically Grading Hardwood Lumber - (Industrial Metrology) , 1992 .

[50]  Marco Castellani,et al.  Evolutionary Artificial Neural Network Design and Training for wood veneer classification , 2009, Eng. Appl. Artif. Intell..

[51]  Jussi Parkkinen,et al.  Color features for quality control in ceramic tile industry , 2001 .

[52]  T. Martins,et al.  A computer vision system for color grading wood boards using Fuzzy Logic , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[53]  F. K. Wang Confidence interval for the mean of non‐normal data , 2001 .

[54]  Mišel Brezak,et al.  Parquet Sorting and Grading Based on Color and Texture Analyses , 2006, ISIE 2006.

[55]  Marco Gamassi,et al.  A low-cost neural-based approach for wood types classification , 2009, 2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications.

[56]  Vincent Bombardier,et al.  Fuzzy rule classifier: Capability for generalization in wood color recognition , 2010, Eng. Appl. Artif. Intell..