Spectral domain optical coherence tomography for glaucoma (an AOS thesis).

PURPOSE Optical coherence tomography (OCT) is a rapidly evolving, robust technology that has profoundly changed the practice of ophthalmology. Spectral domain OCT (SD-OCT) increases axial resolution 2- to 3-fold and scan speed 60- to 110-fold vs time domain OCT (TD-OCT). SD-OCT enables novel scanning, denser sampling, and 3-dimensional imaging. This thesis tests my hypothesis that SD-OCT improves reproducibility, sensitivity, and specificity for glaucoma detection. METHODS OCT progress is reviewed from invention onward, and future development is discussed. To test the hypothesis, TD-OCT and SD-OCT reproducibility and glaucoma discrimination are evaluated. Forty-one eyes of 21 subjects (SD-OCT) and 21 eyes of 21 subjects (TD-OCT) are studied to test retinal nerve fiber layer (RNFL) thickness measurement reproducibility. Forty eyes of 20 subjects (SD-OCT) and 21 eyes of 21 subjects (TD-OCT) are investigated to test macular parameter reproducibility. For both TD-OCT and SD-OCT, 83 eyes of 83 subjects are assessed to evaluate RNFL thickness and 74 eyes of 74 subjects to evaluate macular glaucoma discrimination. RESULTS Compared to conventional TD-OCT, SD-OCT had statistically significantly better reproducibility in most sectoral macular thickness and peripapillary RNFL sectoral measurements. There was no statistically significant difference in overall mean macular or RNFL reproducibility, or between TD-OCT and SD-OCT glaucoma discrimination. Surprisingly, TD-OCT macular RNFL thickness showed glaucoma discrimination superior to SD-OCT. CONCLUSIONS At its current development state, SD-OCT shows better reproducibility than TD-OCT, but glaucoma discrimination is similar for TD-OCT and SD-OCT. Technological improvements are likely to enhance SD-OCT reproducibility, sensitivity, specificity, and utility, but these will require additional development.

[1]  J. Fujimoto,et al.  High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. , 2007, Optics letters.

[2]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[3]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[4]  James G Fujimoto,et al.  High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo. , 2007, Journal of biomedical optics.

[5]  B. Bengtsson,et al.  A Long-Term Prospective Study of Risk Factors for Glaucomatous Visual Field Loss in Patients With Ocular Hypertension , 2005, Journal of glaucoma.

[6]  H. Ishikawa,et al.  QUANTIFICATION OF PHOTORECEPTOR LAYER THICKNESS IN NORMAL EYES USING OPTICAL COHERENCE TOMOGRAPHY , 2006, Retina.

[7]  P. Kaufman,et al.  Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. , 2007, Experimental eye research.

[8]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[9]  Brett E. Bouma,et al.  In-vivo comparison of coronary plaque characteristics using optical coherence tomography in women vs. men with acute coronary syndrome , 2007, Coronary artery disease.

[10]  J. Taylor,et al.  Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Wolfgang Drexler,et al.  Ultrahigh-resolution optical coherence tomography of surgically closed macular holes. , 2006, Archives of ophthalmology.

[12]  D. Reitze,et al.  Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse. , 2001, Investigative ophthalmology & visual science.

[13]  J. Schmitt,et al.  Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. , 2006, Journal of the American Academy of Dermatology.

[14]  R. Jain,et al.  Correlation between retinal nerve fiber layer thickness and central corneal thickness in patients with ocular hypertension: an optical coherence tomography study. , 2006, American journal of ophthalmology.

[15]  A Giese,et al.  Optical coherence tomography for experimental neuroendoscopy. , 2006, Minimally invasive neurosurgery : MIN.

[16]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[17]  L. A. Paunescu,et al.  Ultrahigh-resolution optical coherence tomography in glaucoma. , 2005, Ophthalmology.

[18]  P. Artal,et al.  Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator , 2005, Vision Research.

[19]  Thilo Gambichler,et al.  Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. , 2007, Journal of the American Academy of Dermatology.

[20]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[21]  J. Fujimoto,et al.  Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography. , 2007, Radiology.

[22]  Maciej Wojtkowski,et al.  In vivo corneal high-speed, ultra high-resolution optical coherence tomography. , 2007, Archives of ophthalmology.

[23]  Maciej Wojtkowski,et al.  Phase-sensitive interferometry in optical coherence tomography , 2001, Lightmetry and Light and Optics in Biomedicine.

[24]  E A Swanson,et al.  Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. , 1997, The Journal of surgical research.

[25]  A. Sommer,et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.

[26]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[27]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[28]  J. Fujimoto,et al.  Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. , 1996, Circulation.

[29]  Yingtian Pan,et al.  Optical coherence tomography: a noninvasive method to assess wound reepithelialization. , 2007, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[30]  J. Izatt,et al.  In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. , 2003, Archives of ophthalmology.

[31]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[32]  Ian A Sigal,et al.  Predicted extension, compression and shearing of optic nerve head tissues. , 2007, Experimental eye research.

[33]  A. Fairhead,et al.  A comparison of 10 MHz and 20 MHz ultrasound probes in imaging the eye and orbit , 2004, British Journal of Ophthalmology.

[34]  G. Baïkoff Anterior segment OCT and phakic intraocular lenses: A perspective , 2006, Journal of cataract and refractive surgery.

[35]  J. Fujimoto,et al.  Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. , 2003, Archives of ophthalmology.

[36]  Maciej Wojtkowski,et al.  High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. , 2006, Ophthalmology.

[37]  U. Schmidt-Erfurth,et al.  Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. , 2005, Investigative ophthalmology & visual science.

[38]  Angelika Unterhuber,et al.  Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. , 2004, Experimental eye research.

[39]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[40]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[41]  J. Izatt,et al.  Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. , 2007, Journal of biomedical optics.

[42]  D. Lam,et al.  Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[43]  P. Kaufman,et al.  Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. , 2001, Investigative ophthalmology & visual science.

[44]  C K Hitzenberger,et al.  Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. , 2000, Optics letters.

[45]  Hiroshi Ishikawa,et al.  Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[46]  Jun Zhang,et al.  Swept Source Based Fourier Domain Functional Optical Coherence Tomography , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[47]  Xingde Li,et al.  Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. , 2006, Journal of biomedical optics.

[48]  Anders Heijl,et al.  Glaucoma Detection by Stratus OCT , 2007, Journal of glaucoma.

[49]  Bin Liu,et al.  Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. , 2007, Journal of biomedical optics.

[50]  Douglas R. Anderson,et al.  Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. , 2008, Ophthalmology.

[51]  Maciej Wojtkowski,et al.  Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. , 2004, Optics letters.

[52]  L. Sakata,et al.  3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. , 2007, Investigative Ophthalmology and Visual Science.

[53]  J. Duker,et al.  Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.

[54]  Robert N Weinreb,et al.  Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. , 2003, American journal of ophthalmology.

[55]  Hiroshi Ishikawa,et al.  Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. , 2005, American journal of ophthalmology.

[56]  P. Kaufman,et al.  Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. , 2000, Archives of ophthalmology.

[57]  Wolfgang Drexler,et al.  Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. , 2006, Ophthalmology.

[58]  Joseph A Izatt,et al.  In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. , 2007, Journal of biomedical optics.

[59]  Daniela Massi,et al.  Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography , 2005, Experimental dermatology.

[60]  P. Kaufman,et al.  Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma , 2003, Progress in Retinal and Eye Research.

[61]  Robert N Weinreb,et al.  Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. , 2005, American journal of ophthalmology.

[62]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[63]  Barry Cense,et al.  Advances in optical coherence tomography imaging for dermatology. , 2004, The Journal of investigative dermatology.

[64]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[65]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[66]  J. Duker,et al.  In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. , 2006, Optics letters.

[67]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[68]  A. Fercher,et al.  In vivo optical coherence tomography. , 1993, American journal of ophthalmology.

[69]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[70]  A. Sommer,et al.  The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.

[71]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[72]  Hiroshi Ishikawa,et al.  Effect of corneal drying on optical coherence tomography. , 2006, Ophthalmology.

[73]  P. Hossain,et al.  Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? , 2007, British Journal of Ophthalmology.

[74]  Thomas Martini Jørgensen,et al.  Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples. , 2007, Journal of biomedical optics.

[75]  Brett E Bouma,et al.  Relationship Between a Systemic Inflammatory Marker, Plaque Inflammation, and Plaque Characteristics Determined by Intravascular Optical Coherence Tomography , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[76]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[77]  Teresa C. Chen,et al.  High-speed imaging of human retina in vivo with swept-source optical coherence tomography. , 2006, Optics express.

[78]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[79]  J. Duker,et al.  Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. , 2004, Ophthalmology.

[80]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[81]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[82]  James G. Fujimoto,et al.  Everyday OCT : a handbook for clinicians and technicians , 2006 .

[83]  J. S. Myers Optic Disk and Nerve Fiber Layer Imaging to Detect Glaucoma , 2009 .

[84]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[85]  Angelika Unterhuber,et al.  ULTRAHIGH RESOLUTION OPTICAL COHERENCE TOMOGRAPHY OF MACULAR HOLES , 2006, Retina.

[86]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[87]  Maciej Wojtkowski,et al.  Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. , 2006, Investigative ophthalmology & visual science.

[88]  C. Cheung,et al.  Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. , 2006, Investigative ophthalmology & visual science.

[89]  J. Fujimoto,et al.  Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. , 2000, Neoplasia.

[90]  J. Fujimoto,et al.  Optical coherence tomography: A new tool for glaucoma diagnosis , 1995, Current opinion in ophthalmology.

[91]  J. Fujimoto,et al.  Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. , 1996, Ophthalmology.

[92]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[93]  N. Gupta,et al.  Glaucoma as a neurodegenerative disease , 2007, Current opinion in ophthalmology.

[94]  G. Wollstein,et al.  Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. , 2004, Investigative ophthalmology & visual science.

[95]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[96]  Angelika Unterhuber,et al.  Ultrahigh resolution optical coherence tomography in macular dystrophy. , 2005, American journal of ophthalmology.

[97]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[98]  Maciej Wojtkowski,et al.  Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography. , 2007, Journal of biomedical optics.

[99]  Harald Sattmann,et al.  Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. , 2003, Investigative ophthalmology & visual science.

[100]  Maciej Wojtkowski,et al.  Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. , 2007, Investigative ophthalmology & visual science.

[101]  Wolfgang Drexler,et al.  Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. , 2005, Ophthalmology.