Strong solutions to the incompressible magnetohydrodynamic equations

In this paper, we are concerned with strong solutions to the Cauchy problem for the incompressible Magnetohydrodynamic equations. By the Galerkin method, energy method and the domain expansion technique, we prove the local existence of unique strong solutions for general initial data, develop a blow-up criterion for local strong solutions and prove the global existence of strong solutions under the smallness assumption of initial data. The initial data are assumed to satisfy a natural compatibility condition and allow vacuum to exist. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  T. Lelièvre,et al.  Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .

[2]  Zhouping Xin,et al.  On the regularity of weak solutions to the magnetohydrodynamic equations , 2005 .

[3]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[4]  Jacques Simon,et al.  Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure , 1990 .

[5]  Hammadi Abidi,et al.  Résultats d’existence dans des espaces critiques pour le système de la MHD inhomogène , 2007 .

[6]  Bum Ja Jin,et al.  Blow-up of viscous heat-conducting compressible flows , 2006 .

[7]  E. Feireisl,et al.  The Equations of Magnetohydrodynamics: On the Interaction Between Matter and Radiation in the Evolution of Gaseous Stars , 2006 .

[8]  Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three‐dimensional domains , 2003 .

[9]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[10]  Zhong Tan,et al.  Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations , 2010 .

[11]  J. Fan,et al.  Strong solution to the compressible magnetohydrodynamic equations with vacuum , 2009 .

[12]  Hyunseok Kim,et al.  A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier-Stokes Equations , 2006, SIAM J. Math. Anal..

[13]  D. Haar,et al.  Fundamentals of Magnetohydrodynamics , 1990 .

[14]  J. U. Kim,et al.  Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density , 1987 .

[15]  Yanjin Wang,et al.  Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force , 2009 .

[16]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[17]  B. Desjardins,et al.  Remarks on a nonhomogeneous model of magnetohydrodynamics , 1998, Differential and Integral Equations.

[18]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[19]  Hyunseok Kim,et al.  Strong Solutions of the Navier–Stokes Equations for Nonhomogeneous Incompressible Fluids , 2003 .

[20]  Yanjin Wang,et al.  BLOW-UP OF SMOOTH SOLUTIONS TO THE NAVIER–STOKES EQUATIONS OF COMPRESSIBLE VISCOUS HEAT-CONDUCTING FLUIDS , 2010, Journal of the Australian Mathematical Society.

[21]  Zhouping Xin,et al.  Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .

[22]  J. Fan,et al.  Global variational solutions to the compressible magnetohydrodynamic equations , 2008 .

[23]  Cheng He,et al.  On the regularity criteria for weak solutions to the magnetohydrodynamic equations , 2007 .

[24]  Hammadi Abidi,et al.  Global existence for the magnetohydrodynamic system in critical spaces , 2008, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Xianpeng Hu,et al.  Global Solutions to the Three-Dimensional Full Compressible Magnetohydrodynamic Flows , 2008, 0804.4510.

[26]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[27]  Jean-Frédéric Gerbeau,et al.  Existence of solution for a density-dependent magnetohydrodynamic equation , 1997, Advances in Differential Equations.

[28]  H. Abidi,et al.  Global existence for the MHD system in critical spaces , 2008, 0806.3417.

[29]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[30]  Jiahong Wu,et al.  Regularity results for weak solutions of the 3D MHD equations , 2003 .