Current, Position, and Shape Control in Tokamaks

Abstract The need to achieve increasingly better performance in present and future tokamak devices has made plasma control increasingly important in tokamak engineering. When high performance and robustness are required, it is essential to adopt a model-based approach to design a control system. We introduce the basics of plasma current, position, and shape control in tokamaks. As an example, the plasma magnetic control systems of the JET tokamak is presented, together with an approach proposed for plasma axisymmetric magnetic control at the ITER tokamak.

[1]  G. R. Dyer,et al.  A model for coupled plasma current and position feedback control in the ISX-B tokamak , 1984 .

[2]  G. Ambrosino,et al.  Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches , 2005, IEEE Control Systems.

[3]  Basil Kouvaritakis,et al.  A discrete adaptive near-time optimum control for the plasma vertical position in a Tokamak , 2001, IEEE Trans. Control. Syst. Technol..

[4]  R. Albanese,et al.  The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks , 1998 .

[5]  Alfredo Pironti,et al.  Integrated Plasma Shape and Boundary Flux Control on JET Tokamak , 2008 .

[6]  Alfredo Pironti,et al.  Magnetic Control of Tokamak Plasmas , 2008 .

[7]  Alfredo Pironti,et al.  An application of the singular perturbation decomposition to plasma position and shape control , 2003 .

[8]  E. Rebhan,et al.  Feedback stabilization of axisymmetric MHD instabilities in tokamaks , 1978 .

[9]  T.K. Fowler,et al.  Nuclear fusion , 1989, IEEE Potentials.

[10]  A. Beghi,et al.  Advances in real-time plasma boundary reconstruction: from gaps to snakes , 2005, IEEE Control Systems.

[11]  Satoshi Itoh,et al.  Analysis of Optimal Feedback Control of Vertical Plasma Position in a Tokamak System , 1985 .

[12]  A. Fusion Engineering and Design A volumetric neutron source for fusion nuclear technology testing and development , 2004 .

[13]  Basil Kouvaritakis,et al.  Application of cautious stable predictive control to vertical positioning in COMPASS-D tokamak , 1999, IEEE Trans. Control. Syst. Technol..

[14]  Maria Letizia Corradini,et al.  IEEE Transactions on Control Systems Technology , 2004 .

[15]  Stephen C. Jardin,et al.  Feedback stabilization of rigid axisymmetric modes in tokamaks , 1982 .

[16]  R. Tempo,et al.  European Journal of Control: Guest Editorial , 2005 .

[17]  L. L. Lao,et al.  Edge localized mode physics and operational aspects in tokamaks , 2003 .

[18]  Analysis of Modern Optimal Control Theory Applied to Plasma Position and Current Control in TFTR , 1982, IEEE Transactions on Plasma Science.

[19]  Miroslav Krstic,et al.  Plasma vertical stabilization with actuation constraints in the DIII-D tokamak , 2005, Autom..

[20]  Stephen O. Dean,et al.  Fusion Science and Technology for the New Millennium , 1999 .

[21]  Parag Vyas,et al.  VERTICAL POSITION CONTROL ON COMPASS-D , 1998 .

[22]  Michael G. Safonov,et al.  Global optimization for the Biaffine Matrix Inequality problem , 1995, J. Glob. Optim..

[23]  Filippo Sartori,et al.  The PCU JET Plasma Vertical Stabilization control system , 2010 .

[24]  G. Ambrosino,et al.  Design of the Plasma Position and Shape Control in the ITER Tokamak Using In-Vessel Coils , 2009, IEEE Transactions on Plasma Science.

[25]  C. Giroud,et al.  Role of the plasma shaping in ITB experiments on JET , 2003 .

[26]  Sergiy Butenko,et al.  2012 Journal of Global Optimization best paper award , 2013, Journal of Global Optimization.

[27]  朴 三奎,et al.  Fusion Technology , 2004, The Future of Fusion Energy.

[28]  Alfredo Pironti,et al.  Design and Implementation of an Output Regulation Controller for the JET Tokamak , 2008, IEEE Transactions on Control Systems Technology.

[29]  N. Holtkamp,et al.  The status of the ITER design , 2009 .

[30]  R. Albanese,et al.  XSC Tools: A Software Suite for Tokamak Plasma Shape Control Design and Validation , 2007, IEEE Transactions on Plasma Science.

[31]  Alfredo Pironti,et al.  Optimal steady-state control for linear non-right-invertible systems , 2007 .

[32]  S. Yurkovich,et al.  IEEE control systems magazine outstanding paper award , 2001 .

[33]  M. Ariola,et al.  Plasma shape control for the JET tokamak: an optimal output regulation approach , 2005, IEEE Control Systems.

[34]  Massimiliano Mattei,et al.  Plasma Response Models for Current, Shape and Position Control in Jet , 2003 .

[35]  Gianmaria De Tommasi,et al.  Plasma Vertical Stabilization in the ITER Tokamak via Constrained Static Output Feedback , 2011, IEEE Transactions on Control Systems Technology.

[36]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[37]  E. Joffrin,et al.  Plasma Strike-Point Sweeping on JET Tokamak With the eXtreme Shape Controller , 2008, IEEE Transactions on Plasma Science.

[38]  Massimiliano Mattei,et al.  Principal physics developments evaluated in the ITER design review , 2009 .

[39]  Alfredo Pironti,et al.  Design and experimental testing of a robust multivariable controller on a tokamak , 2002, IEEE Trans. Control. Syst. Technol..

[40]  Frank Allgöwer,et al.  Journal of Process Control: Guest Editorial , 2001 .

[41]  J. Freidberg,et al.  Plasma Physics and Fusion Energy , 2007 .

[42]  T Bellizio,et al.  The Software Architecture of the New Vertical-Stabilization System for the JET Tokamak , 2010, IEEE Transactions on Plasma Science.