A case study for the open question: disturbance decoupling problem for singular systems by output feedback

We study the disturbance decoupling problem for singular systems Ex/spl dot/=Ax+Bu+Gd, y=Cx, z=Hx with left invertibility. We give necessary and sufficient conditions for the existence of a solution to the disturbance decoupling problem with or without stability by output feedback that also makes the resulting closed-loop system regular and/or of index at most one. All results are proved based on a condensed form that can be computed using orthogonal transformations, i.e., can be computed in a numerically stable way.

[1]  George Miminis A direct algorithm for pole assignment of time invariant linear systems using output feedback , 1986, 1986 25th IEEE Conference on Decision and Control.

[2]  R. Skelton,et al.  Parametrization of all stabilizing controllers via quadratic Lyapunov functions , 1995 .

[3]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[4]  Vassilis L. Syrmos,et al.  Disturbance decoupling using constrained Sylvester equations , 1994, IEEE Trans. Autom. Control..

[5]  Fotis N. Koumboulis,et al.  Meeting transfer function requirements via static measurement output feedback , 1998 .

[6]  Vasfi Eldem,et al.  Disturbance decoupling problems by measurements feedback: a characterization of all solutions and fixed modes , 1988 .

[7]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[8]  L. Fletcher,et al.  An intermediate algorithm for pole placement by output feedback in descriptor systems , 1994 .

[9]  Rajni V. Patel,et al.  Numerical algorithms for eigenvalue assignment by constant and dynamic output feedback , 1989 .

[10]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[11]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[12]  L. R. Fletcher,et al.  On disturbance decoupling in descriptor systems , 1989 .

[13]  Marek Rakowski,et al.  Transfer Function Approach to Disturbance Decoupling Problem , 1994 .

[14]  Andrzej Banaszuk,et al.  The disturbance decoupling problem for implicit linear discrete-time systems , 1990 .

[15]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[16]  Daniel W. C. Ho,et al.  Regularization of Singular Systems by Derivative and Proportional Output Feedback , 1998, SIAM J. Matrix Anal. Appl..

[17]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[18]  Amit Ailon An approach for pole assignment by gain output feedback in square singular systems , 1991, Kybernetika.

[19]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[20]  Volker Mehrmann,et al.  Disturbance Decoupling for Descriptor Systems by State Feedback , 2000, SIAM J. Control. Optim..

[21]  Trifon G. Koussiouris,et al.  Frequency-domain conditions for disturbance rejection and decoupling with stability or pole placement , 1996, Autom..

[22]  Volker Mehrmann,et al.  Regularization of Descriptor Systems by Derivative and Proportional State Feedback , 1992, SIAM J. Matrix Anal. Appl..

[23]  J. Willems,et al.  Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement , 1981 .

[24]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[25]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .