Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region

Abstract. Water vapor is an important greenhouse gas. The atmospheric water vapor content is monitored by remote methods, which require accurate spectroscopic information about H2O absorption line parameters. The problems of accuracy of accounting the selective water vapor absorption in the simulation of atmospheric transfer of solar radiation are considered in this work. The atmospheric spectra are simulated using different versions of spectroscopic databases of H2O absorption line parameters and compared with the solar spectra measured by a ground-based Fourier transform spectrometer. The total column (TC) water vapor is retrieved from the solar spectra measured. The effect of the differences in absorption line parameters in modern spectroscopic databases on the results of retrieval of the TC water vapor from high-resolution spectra is estimated.

[1]  A. Pine Line mixing sum rules for the analysis of multiplet spectra. , 1997 .

[2]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[3]  F. Hasea,et al.  Intercomparison of retrieval codes used for the analysis of high-resolution , ground-based FTIR measurements , 2004 .

[4]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[5]  R. Tolchenov,et al.  Water line parameters from refitted spectra constrained by empirical upper state levels : Study of the 9500-14,500 cm- 1 region , 2008 .

[6]  Peter Bergamaschi,et al.  Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT , 2008 .

[7]  J. Tennyson,et al.  A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. , 2011, The Journal of chemical physics.

[8]  R. Harrison Introduction to atmospheric chemistry , 2000 .

[9]  K. M. Firsov,et al.  Simulation of the atmospheric transfer of the solar radiation in water vapor absorption bands , 2015, Atmospheric and Ocean Optics.

[10]  Shepard A. Clough,et al.  Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx , 2009 .

[11]  Jean-Michel Hartmann,et al.  An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes , 2013 .

[12]  P. Bernath,et al.  IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O , 2014 .

[13]  Hans-Christian Steen-Larsen,et al.  Continuous measurements of atmospheric water vapour isotopes in western Siberia (Kourovka) , 2014 .

[14]  Ann Carine Vandaele,et al.  Fourier transform measurements of water vapor line parameters in the 4200–6600 cm−1 region , 2007 .

[15]  A. Chedin,et al.  Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON , 2016 .

[16]  J. Tennyson,et al.  Line lists for H218O and H217O based on empirical line positions and ab initio intensities , 2012 .

[17]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .

[18]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[19]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[20]  Jonathan Tennyson,et al.  The 2015 edition of the GEISA spectroscopic database , 2016 .

[21]  V. M. Devi,et al.  The 2009 edition of the GEISA spectroscopic database , 2011 .

[22]  P. Bernath,et al.  IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O , 2010 .

[23]  Jonathan Tennyson,et al.  An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list , 2010 .

[24]  V. Zuev,et al.  Statistical Models of the Temperature and Gaseous Components of the Atmosphere , 1987 .

[25]  Harry Partridge,et al.  Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities , 2000 .

[26]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[27]  Ilse Aben,et al.  Improved water vapour spectroscopy in the 4174-4300 cm-1 region and its impact on SCIAMACHY HDO/H2O measurements , 2012 .

[28]  P. Bernath,et al.  IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers for H217O and H218O , 2009 .

[29]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Laurence S. Rothman,et al.  Current updates of the water-vapor line list in HITRAN: A new “Diet” for air-broadened half-widths , 2007 .

[31]  I. Gordon,et al.  HITRAN spectroscopy evaluation using solar occultation FTIR spectra , 2016 .

[32]  J. Jouzel,et al.  Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing) , 2014 .

[33]  P. Bernath,et al.  IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition , 2013 .

[34]  Matthias Schneider,et al.  Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON) , 2010 .

[35]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[36]  T. Y. Chesnokova,et al.  Calculation of solar radiation atmospheric absorption with different H2O spectral line data banks , 2009 .

[37]  Dorothea Hilhorst,et al.  Synthesis Report , 2018, Reshaping Decentralised Development Co-operation.

[38]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[39]  Jonathan Tennyson,et al.  Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) , 2014, 1409.7782.

[40]  S. Mikhailenko,et al.  An improved line list for water vapor in the 1.5 µm transparency window by highly sensitive CRDS between 5852 and 6607 cm−1 , 2013 .

[41]  T. Chesnokova,et al.  Atmospheric radiative transfer simulation in water vapor total content retrievals using different spectroscopic databanks of H2O absorption line parameters , 2016 .

[42]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[43]  J. Hodges,et al.  Application of the Hartmann–Tran profile to analysis of H2O spectra , 2015 .

[44]  S. Mikhailenko,et al.  A spectroscopic database for water vapor between 5850 and 8340 cm−1 , 2016 .

[45]  B. M. Fulk MATH , 1992 .

[46]  W. J. Lafferty,et al.  The H216O molecule : Line position and line intensity analyses up to the second triad , 2008 .

[47]  B. Connor,et al.  Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric , 1998 .