Hilbert's 6th problem: Exact and approximate hydrodynamic manifolds for kinetic equations

The problem of the derivation of hydrodynamics from the Boltz- mann equation and related dissipative systems is formulated as the problem of slow invariant manifold in the space of distributions. We review a few in- stances where such hydrodynamic manifolds were found analytically both as the result of summation of the Chapman-Enskog asymptotic expansion and by the direct solution of the invariance equation. These model cases, comprising Grad's moment systems, both linear and nonlinear, are studied in depth in order to gain understanding of what can be expected for the Boltzmann equa- tion. Particularly, the dispersive dominance and saturation of dissipation rate of the exact hydrodynamics in the short-wave limit and the viscosity modifica- tion at high divergence of the flow velocity are indicated as severe obstacles to the resolution of Hilbert's 6th Problem. Furthermore, we review the derivation of the approximate hydrodynamic manifold for the Boltzmann equation using Newton's iteration and avoiding smallness parameters, and compare this to the exact solutions. Additionally, we discuss the problem of projection of the Boltzmann equation onto the approximate hydrodynamic invariant manifold using entropy concepts. Finally, a set of hypotheses is put forward where we describe open questions and set a horizon for what can be derived exactly or proven about the hydrodynamic manifolds for the Boltzmann equation in the future.

[1]  J. M. Powers,et al.  One-Dimensional Slow Invariant Manifolds for Fully Coupled Reaction and Micro-scale Diffusion , 2013, SIAM J. Appl. Dyn. Syst..

[2]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[3]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[4]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[5]  Laure Saint-Raymond,et al.  A mathematical PDE perspective on the Chapman–Enskog expansion , 2013 .

[6]  A. Bobylev Quasistationary hydrodynamics for the Boltzmann equation , 1995 .

[7]  A. Kornev A method of graph transformation type for numerical simulation of invariant manifolds , 2007 .

[8]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[9]  Shin-ichi Inage,et al.  Local Entropy Balance through the Shock Wave , 1986 .

[10]  Michael Shub,et al.  The local theory of normally hyperbolic, invariant, compact manifolds , 1977 .

[11]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[12]  G. Uhlenbeck Somes Notes on the Relation between Fluid Mechanics and Statistical Physics , 1980 .

[13]  A. Bobylev,et al.  Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas , 1984 .

[14]  Helly Grundbegriffe der Wahrscheinlichkeitsrechnung , 1936 .

[15]  C. David Levermore,et al.  The Small Dispersion Limit of the Korteweg-deVries Equation. I , 1982 .

[16]  H. P. McKean,et al.  A simple model of the derivation of fluid mechanics from the Boltzmann equation , 1969 .

[17]  V. I. Arnol’d Bifurcations of invariant manifolds of differential equations and normal forms in neighborhoods of elliptic curves , 1976 .

[18]  Pierre-Louis Lions,et al.  Une approche locale de la limite incompressible , 1999 .

[19]  V. Garzó,et al.  Kinetic Theory of Gases in Shear Flows , 2003 .

[20]  Alexander N Gorban,et al.  Short-Wave Limit of Hydrodynamics: A Soluble Example. , 1996, Physical review letters.

[21]  B. Dubrovin,et al.  On the critical behavior in nonlinear evolutionary PDEs with small viscosity , 2012, 1301.7216.

[22]  Alexander N. Gorban,et al.  Dynamic correction to moment approximations , 1998 .

[23]  A. Il'in,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[24]  Baldwin Robertson,et al.  Equations of Motion in Nonequilibrium Statistical Mechanics , 1966 .

[25]  Michel Talagrand,et al.  Rigorous low-temperature results for the mean field p-spins interaction model , 2000 .

[26]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[27]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[28]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[29]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[30]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[31]  D. Hilbert,et al.  Begründung der kinetischen Gastheorie , 1912 .

[32]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[35]  Nonarbitrary regularization of acoustic spectra , 1993 .

[36]  A. N. Gorban,et al.  Constructive methods of invariant manifolds for kinetic problems , 2003 .

[37]  R. Temam,et al.  Inertial manifolds and slow manifolds , 1991 .

[38]  Nonlinear viscosity and velocity distribution function in a simple longitudinal flow , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Marshall Slemrod,et al.  From Boltzmann to Euler: Hilbert's 6th problem revisited , 2013, Comput. Math. Appl..

[40]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[41]  E. H. Hauge Exact and Chapman‐Enskog Solutions of the Boltzmann Equation for the Lorentz Model , 1970 .

[42]  Nikolaos Kazantzis,et al.  Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems , 2000 .

[43]  R. Mattuck,et al.  A guide to Feynman diagrams in the many-body problem , 1976 .

[44]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[45]  Laure Saint-Raymond,et al.  Hydrodynamic Limits of the Boltzmann Equation , 2009 .

[46]  Masahito Ueda,et al.  Divergence-free WKB theory , 2004 .

[47]  Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations , 2006 .

[48]  Andrés Santos,et al.  Kinetic Theory of Gases in Shear Flows: Nonlinear Transport , 2003 .

[49]  Moshe Y. Vardi,et al.  Dynamic and static limitation in multiscale reaction networks, revisited , 2007, physics/0703278.

[50]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[51]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[52]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[53]  H. E. Kuhn,et al.  BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, , 2007 .

[54]  Alexander N Gorban,et al.  Quasi-equilibrium closure hierarchies for the Boltzmann equation , 2003, cond-mat/0305599.

[55]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[56]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[57]  Misha Gromov,et al.  Spaces and Questions , 2010 .

[58]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[59]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[60]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[61]  Karlin,et al.  Scattering rates versus moments: Alternative Grad equations. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2001 .

[63]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[64]  Tai-Ping Liu,et al.  Energy method for Boltzmann equation , 2004 .

[65]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[66]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[67]  Exact summation of the Chapman-Enskog expansion from moment equations , 2000 .

[68]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[69]  Wolf-Jürgen Beyn,et al.  Numerical Taylor expansions of invariant manifolds in large dynamical systems , 1998, Numerische Mathematik.

[70]  Eliodoro Chiavazzo,et al.  Comparison of invariant manifolds for model reduction in chemical kinetics , 2007 .

[71]  Stephen G. Brush,et al.  Nineteenth-Century Physics. (Book Reviews: The Kind of Motion We Call Heat. A History of the Kinetic Theory of Gases in the 19th Century) , 1978 .

[72]  Pierre Deligne,et al.  Quantum Fields and Strings: A Course for Mathematicians , 1999 .

[73]  J. Collins Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion , 1984 .

[74]  M Kröger,et al.  Exact linear hydrodynamics from the Boltzmann equation. , 2008, Physical review letters.

[75]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[76]  Marshall Slemrod,et al.  Constitutive Relations for Monatomic Gases¶Based on a¶Generalized Rational Approximation¶to the Sum of the Chapman-Enskog Expansion , 1999 .

[77]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .

[78]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[79]  Cl'ement Mouhot,et al.  Explicit Coercivity Estimates for the Linearized Boltzmann and Landau Operators , 2006, math/0607538.

[80]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[81]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[82]  Alexander Kurganov,et al.  Effects of a Saturating Dissipation in Burgers-Type Equations , 1997 .

[83]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[84]  Alexander N Gorban,et al.  Uniqueness of thermodynamic projector and kinetic basis of molecular individualism , 2003, cond-mat/0309638.

[85]  Renormalization of the Chapman–Enskog Expansion: Isothermal Fluid Flow and Rosenau Saturation , 1998 .

[86]  Alexander N Gorban,et al.  North-Holland Thermodynamic parameterization , 1992 .

[87]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[88]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[89]  Costas Kravaris,et al.  A new model reduction method for nonlinear dynamical systems , 2009 .

[90]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[91]  Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad's equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Cédric Villani,et al.  On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation , 2005 .

[93]  G. Veneziano Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories , 1968 .

[94]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[95]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[96]  A. M. Ilʹin,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[97]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[98]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[99]  M. Talagrand A new look at independence , 1996 .

[100]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[101]  Leo Corry,et al.  David Hilbert and the axiomatization of physics (1894–1905) , 1997 .

[102]  Simplest nonlinear regularization , 1992 .

[103]  Laure Saint-Raymond,et al.  From the BGK model to the Navier–Stokes equations , 2003 .

[104]  Alexander N. Gorban,et al.  General approach to constructing models of the Boltzmann equation , 1994 .

[105]  Alexander N Gorban,et al.  TWO-STEP APPROXIMATION OF SPACE-INDEPENDENT RELAXATION , 1999 .

[106]  R. Feynman The Character of Physical Law , 1965 .

[107]  A. Voros The return of the quartic oscillator. The complex WKB method , 1983 .

[108]  Alexander N Gorban,et al.  Extended detailed balance for systems with irreversible reactions , 2011, 1101.5280.

[109]  François Golse,et al.  The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels , 2004 .

[110]  Martin Kröger,et al.  From hyperbolic regularization to exact hydrodynamics for linearized Grad's equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[112]  Alexander N. Gorban,et al.  Method of invariant manifolds and regularization of acoustic spectra , 1994 .

[113]  Isabelle Gallagher,et al.  From Newton to Boltzmann: Hard Spheres and Short-range Potentials , 2012, 1208.5753.

[114]  Miroslav Grmela,et al.  Multiscale Equilibrium and Nonequilibrium Thermodynamics in Chemical Engineering , 2010 .

[115]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[116]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[117]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[118]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[119]  F. Dyson Divergence of perturbation theory in quantum electrodynamics , 1952 .

[120]  M. Slemrod Chapman-Enskog ⇒ viscosity-capillarity , 2012 .

[121]  R. Dobrushin,et al.  The central limit theorem and the problem of equivalence of ensembles , 1977 .

[122]  J. E. Dunn,et al.  On the thermomechanics of interstitial working , 1985 .

[123]  John Guckenheimer,et al.  A Fast Method for Approximating Invariant Manifolds , 2004, SIAM J. Appl. Dyn. Syst..

[124]  A. Khinchin Mathematical foundations of statistical mechanics , 1949 .

[125]  N. Masmoudi Hydrodynamic Limits of the Boltzmann Equation , 2004 .

[126]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[127]  Theresa A. Good,et al.  Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs , 2002 .

[128]  Iliya V. Karlin,et al.  Structure and approximations of the chapman-enskog expansion for the linearized grad equations , 1992 .

[129]  D. Hilbert Mathematical Problems , 2019, Mathematics: People · Problems · Results.

[130]  E. Fontich,et al.  Transversal homoclinic points of a class of conservative diffeomorphisms , 1990 .

[131]  A. Gorban,et al.  Invariant Manifolds for Physical and Chemical Kinetics , 2005 .

[132]  Alexander N Gorban,et al.  Legendre integrators, post-processing and quasiequilibrium , 2003, cond-mat/0308488.

[133]  A. Bobylev,et al.  The Chapman-Enskog and Grad methods for solving the Boltzmann equation , 1982 .

[134]  Alexander N. Gorban,et al.  Hydrodynamics from Grad's equations: What can we learn from exact solutions? , 2002, Annalen der Physik.

[135]  L. Saint-Raymond,et al.  The Brownian motion as the limit of a deterministic system of hard-spheres , 2013, 1305.3397.

[136]  Iliya V. Karlin,et al.  INVARIANCE PRINCIPLE FOR EXTENSION OF HYDRODYNAMICS : NONLINEAR VISCOSITY , 1997 .

[137]  Alexander N. Gorban Order–disorder separation: Geometric revision , 2007 .

[138]  Alexander N Gorban,et al.  Relaxational trajectories: global approximations , 1996 .

[139]  C. David Levermore,et al.  The small dispersion limit of the Korteweg‐de Vries equation. III , 1983 .

[140]  R. Kubo,et al.  Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance , 1957 .

[141]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[142]  J. Kirkwood The statistical mechanical theory of irreversible processes , 1949 .

[143]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[144]  Padé approximants, Borel transforms and renormalons: the Bjorken sum rule as a case study , 1995, hep-ph/9509312.

[145]  M. Lampis New approach to the Mott-Smith method for shock waves , 1977 .

[146]  A. L. Kuzemsky,et al.  Nonequilibrium Statistical Thermodynamics , 2017 .

[147]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[148]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[149]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[150]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[151]  O. Lanford Time evolution of large classical systems , 1975 .

[152]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[153]  U. Maas,et al.  A general algorithm for improving ILDMs , 2002 .

[154]  Miroslav Grmela,et al.  Role of thermodynamics in multiscale physics , 2013, Comput. Math. Appl..

[155]  David Enskog,et al.  Kinetische theorie der Vorgänge in Mässig verdünnten Gasen , 1917 .

[156]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[157]  Rosenau,et al.  Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. , 1989, Physical review. A, General physics.