Simple front tracking

A new and simplified front tracking algorithm has been developed as an aspect of the extension of this algorithm to three dimensions. Here the authors emphasize two main results: (1) a simplified description of the microtopology of the interface, based on interface crossings with cell block edges, and (2) an improved algorithm for the interaction of a tracked contact discontinuity with an untracked shock wave. For the latter question, they focus on the post interaction jump at the contact, which is a purely 1D issue. Comparisons to other methods, including the level set method, are included.

[1]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[2]  John W. Grove,et al.  The interaction of shock waves with fluid interfaces , 1989 .

[3]  John W. Grove,et al.  IRREGULAR SHOCK REFRACTIONS AT A MATERIAL INTERFACE , 1992 .

[4]  Xiaolin Li,et al.  Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..

[5]  James Glimm,et al.  Subgrid resolution of fluid discontinuities, II , 1980 .

[6]  James Glimm,et al.  Numerical Study for the Three-Dimensional Rayleigh-Taylor Instability through the TVD/AC Scheme and Parallel Computation , 1996 .

[7]  L. F. Henderson,et al.  Precursor shock waves at a slow—fast gas interface , 1976 .

[8]  John W. Grove,et al.  Applications of front tracking to the simulation of shock refractions and unstable mixing , 1994 .

[9]  Qiang Zhang,et al.  Quantitative theory of Richtmyer-Meshkov instability in three dimensions , 1999 .

[10]  Oliver A. McBryan,et al.  A computational model for interfaces , 1985 .

[11]  I. I. Glass,et al.  Domains and boundaries of non-stationary oblique shock-wave reflexions. 1. Diatomic gas , 1979, Journal of Fluid Mechanics.

[12]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[13]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[14]  David H. Sharp,et al.  Numerical investigation of Richtmyer–Meshkov instability using front tracking , 1995, Journal of Fluid Mechanics.

[15]  I-Liang Chern,et al.  Vorticity generation and evolution in shock‐accelerated density‐stratified interfaces , 1992 .

[16]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[17]  Ravi Samtaney,et al.  Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws , 1994, Journal of Fluid Mechanics.

[18]  Qiang Zhang,et al.  Nonlinear theory of unstable fluid mixing driven by shock wave , 1997 .

[19]  Zabusky,et al.  Vortex paradigm for shock-accelerated density-stratified interfaces. , 1989, Physical review letters.

[20]  M. Lighthill Supersonic Flow and Shock Waves , 1949, Nature.

[21]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[22]  L. F. Henderson,et al.  Shock waves at a slow-fast gas interface , 1978 .

[23]  Yuefan Deng,et al.  A renormalization group scaling analysis for compressible two-phase flow , 1993 .

[24]  Marilyn Schneider,et al.  Richtmyer–Meshkov instability growth: experiment, simulation and theory , 1999, Journal of Fluid Mechanics.

[25]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[26]  Qiang Zhang,et al.  A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks , 1998 .

[27]  Yang,et al.  Quantitative theory of Richtmyer-Meshkov instability. , 1993, Physical review letters.

[28]  L. F. Henderson,et al.  Shock waves at a fast-slow gas interface , 1978, Journal of Fluid Mechanics.

[29]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[30]  Robert G. Jahn,et al.  The refraction of shock waves at a gaseous interface , 1956, Journal of Fluid Mechanics.