Connections between structured tight frames and sum-of-squares optimization

This note describes a new technique for generating tight frames that have a high degree of symmetry and entrywise Gramian structure. The technique is based on a "lifting" construction through which, from non-maximal real equiangular tight frames of N vectors in r-dimensional space, we produce real unit-norm tight frames of

[1]  Alexander Barg,et al.  Finite two-distance tight frames , 2014, 1402.3521.

[2]  Alexander Barg,et al.  Bounds on sets with few distances , 2009, J. Comb. Theory, Ser. A.

[3]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[4]  Aicke Hinrichs Spherical codes and Borsuk's conjecture , 2002, Discret. Math..

[5]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.

[6]  Martin Grötschel The Sharpest Cut , 2004, MPS-SIAM series on optimization.

[7]  Afonso S. Bandeira,et al.  A Gramian Description of the Degree 4 Generalized Elliptope , 2018, 1812.11583.

[8]  Hiroshi Nozaki,et al.  Bounds on three- and higher-distance sets , 2010, Eur. J. Comb..

[9]  Dustin G. Mixon,et al.  Tables of the existence of equiangular tight frames , 2015, ArXiv.

[10]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[11]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[12]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[13]  S. Poljak,et al.  On a positive semidefinite relaxation of the cut polytope , 1995 .

[14]  Pablo A. Parrilo,et al.  Sparse sums of squares on finite abelian groups and improved semidefinite lifts , 2016, Math. Program..

[15]  Monique Laurent,et al.  Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope , 2003, Math. Oper. Res..

[16]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[17]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[18]  Peter G. Casazza,et al.  Real equiangular frames , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[19]  Oleg R. Musin,et al.  Spherical two-distance sets , 2008, J. Comb. Theory, Ser. A.

[20]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[21]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[22]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Matthew Fickus,et al.  Detailing the equivalence between real equiangular tight frames and certain strongly regular graphs , 2015, SPIE Optical Engineering + Applications.

[24]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[25]  Monique Laurent,et al.  Semidefinite Relaxations for Max-Cut , 2004, The Sharpest Cut.

[26]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[27]  Monique Laurent,et al.  On the Facial Structure of the Set of Correlation Matrices , 1996, SIAM J. Matrix Anal. Appl..

[28]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[29]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[30]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .