Contributions to visual servoing for legged and linked multicomponent robots

Esta tesis reporta dos aportaciones principales a las areas de robotica y Visual Servoing: una aproximacion de Visual Servoing para robots multi-podos, y contribuciones al modelado, control y Visual Servoing de Sistemas Roboticos Multi-Componentes Ligados (Linked MCRS). Ademas hemos realizado una revision exhaustiva sobre Visual Servoing. Hemos desarrollado una construccion formal y rigurosa de la Jacobiana de la imagen para un robot multi-podo generico, basado en la minimizacion del error visual y teniendo en cuenta todos los grados de libertad del robot. Nos hemos especializado en el robot Aibo ERS-7 de Sony, construyendo la implementacion del control en el robot. Hemos realizado una experimentacion empirica sistematica para estimar el rango de aplicacion del modelo y su sensibilidad. Los MCRS Ligados consisten de un grupo de robots transportando un objeto pasivo uni-dimensional (cable o manguera). Este es el primer estudio formal, del que tenemos conocimiento, para estos sistemas. Hemos construido un modelo de la dinamica del sistema basado en splines dinamicos que permite la simulacion del sistema, incluyendo alogritmos de control heuristicos para los robots. Este modelo permite el estudio del efecto de varios parametros de la manguera, como el peso, rigidez y posiciones de los robots. Ademas hemos derivado analiticamente de este mdelo la cinematica inversa para el movimiento de la manguera desde una configuracion inicial a una configuracion deseada. Finalmente, hemos realizado experimentos fisicos de control visual centalizado de sistemas MCRS Ligados con un grupo de robots SR1 que trasladan un cable electrico relativamente rigido, que ademas es el primer intento de realizar este tipo de sistemas.

[1]  Wen Yu,et al.  Visual servoing with velocity observer and neural compensation , 2004, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, 2004..

[2]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[3]  Minoru Asada,et al.  Adaptive visual servoing for legged robots-vision-cued swaying of legged robots in unknown environments , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[4]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[5]  Patrick Bouthemy,et al.  Exploiting Image Motion for Active Vision in a Visual Servoing Framework , 1996, Int. J. Robotics Res..

[6]  Michel Perrier,et al.  Active Stereovision Using Invariant Visual Servoing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Vladan Papić,et al.  Adaptive Neural Network (ANN) for Visual Servoing: the Mimetic Approach , 2007 .

[8]  Hideki Hashimoto,et al.  Visual servo control of robotic manipulators based on artificial neural network , 1989, 15th Annual Conference of IEEE Industrial Electronics Society.

[9]  Gerd Hirzinger,et al.  Multisensory visual servoing by a neural network , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Joris De Schutter,et al.  Integrated Visual Servoing and Force Control - The Task Frame Approach , 2003, Springer Tracts in Advanced Robotics.

[11]  Yoshiaki Shirai,et al.  Guiding a robot by visual feedback in assembling tasks , 1973, Pattern Recognit..

[12]  Myung Jin Chung,et al.  An On-line Trajectory Generation for Control of Active Head-eye System , 2000 .

[13]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[14]  Laurent Grisoni,et al.  Geometrically exact dynamic splines , 2008, Comput. Aided Des..

[15]  Elmar Schömer,et al.  Interactive simulation of one-dimensional flexible parts , 2006, Symposium on Solid and Physical Modeling.

[16]  Patrick Dähne,et al.  Real-Time Virtual Cables Based on Kinematic Simulation , 2000, WSCG.

[17]  Nicolás García Aracil,et al.  Continuous visual servoing despite the changes of visibility in image features , 2005, IEEE Transactions on Robotics.

[18]  Ezio Malis,et al.  Preserving the continuity of visual servoing despite changing image features , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[19]  François Chaumette,et al.  Path planning in image space for robust visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[21]  Il Hong Suh,et al.  A visual servoing algorithm using fuzzy logics and fuzzy-neural networks , 2000 .

[22]  김태원,et al.  퍼지 추론에 의한 시각적 구동 방법 ( Visual Servoing by a Fuzzy Reasoning Method ) , 1991 .

[23]  François Chaumette,et al.  Positioning a camera parallel to a plane using dynamic visual servoing , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[24]  Giulio Sandini,et al.  Camera self orientation and docking maneuver using normal flow , 1995, Defense, Security, and Sensing.

[25]  W. Thomas Miller,et al.  Sensor-based control of robotic manipulators using a general learning algorithm , 1987, IEEE J. Robotics Autom..

[26]  Zengqi Sun,et al.  Image Based Visual Servoing Using Takagi-Sugeno Fuzzy Neural Network Controller , 2007, 2007 IEEE 22nd International Symposium on Intelligent Control.

[27]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[28]  Nagarajan Sukavanam,et al.  Neural Network Based Controller for Visual Servoing of Robotic Hand Eye System , 2007, Eng. Lett..

[29]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[30]  Ezio Malis,et al.  Stability Analysis of Invariant Visual Servoing and Robustness to Parametric Uncertainties , 2003, Control Problems in Robotics.

[31]  Lee E. Weiss,et al.  Dynamic visual servo control of robots: An adaptive image-based approach , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[32]  François Chaumette,et al.  Image-based visual servoing by integration of dynamic measurements , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[33]  Wen Yu,et al.  Stable visual servoing with neural network compensation , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[34]  François Chaumette,et al.  Multi-cameras visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[35]  Hong Qin,et al.  D-NURBS: A Physics-Based Framework for Geometric Design , 1996, IEEE Trans. Vis. Comput. Graph..

[36]  Stephan K. Chalup,et al.  The 2005 NUbots Team Report , 2006 .

[37]  Fumio Miyazaki,et al.  Manipulator control by using servoing with the stereo vision , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[38]  Luke Fletcher,et al.  Reinforcement learning for visual servoing of a mobile robot , 2000 .

[39]  Philippe Martinet,et al.  Is 3D useful in stereo visual control? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[40]  François Chaumette,et al.  2d 1/2 visual servoing with respect to a planar object , 1997 .

[41]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[42]  Ezio Malis Visual servoing invariant to changes in camera-intrinsic parameters , 2004, IEEE Trans. Robotics Autom..

[43]  Patrice Wira,et al.  NeuroModule-based visual servoing of a robot arm with a 2 d.o.f. camera , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[44]  Peter Corke,et al.  VISUAL CONTROL OF ROBOT MANIPULATORS – A REVIEW , 1993 .

[45]  Wen Yu,et al.  Robust Visual Servoing of Robot Manipulators with Neuro Compensation , 2005, J. Frankl. Inst..

[46]  P. Y. Coulon,et al.  Use of a TV Camera System in Closed-Loop Position Control of Mechanisms , 1983 .

[47]  W. Thomas Miller,et al.  Real-time application of neural networks for sensor-based control of robots with vision , 1989, IEEE Trans. Syst. Man Cybern..

[48]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[49]  Philippe A. Couvignou,et al.  Visual servoing in the task-function framework: A contour following task , 1995, J. Intell. Robotic Syst..

[50]  Patrick Rives,et al.  Visual Servoing Based on a Task Function Approach , 1989, ISER.

[51]  Pradeep K. Khosla,et al.  Robotic manipulation using high bandwidth force and vision feedback , 1996 .

[52]  Yohannes Kassahun,et al.  Learning Neural Networks for Visual Servoing Using Evolutionary Methods , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[53]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[54]  S. Antman Nonlinear problems of elasticity , 1994 .

[55]  Philippe Martinet,et al.  Stacking Jacobians properly in stereo visual servoing , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[56]  Iván Villaverde De la Nava On computational intelligence tools for vision based navigation of mobile robots , 2009 .

[57]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[58]  Patrice Wira,et al.  Neural networks organizations to learn complex robotic functions , 2003, ESANN.

[59]  Il Hong Suh,et al.  Fuzzy membership function based neural networks with applications to the visual servoing of robot manipulators , 1994, IEEE Trans. Fuzzy Syst..

[60]  Ying Wu,et al.  Visual Tracking , 2020, Encyclopedia of Robotics.

[61]  Minoru Asada,et al.  Adaptive hybrid visual servoing/force control in unknown environment , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[62]  Minoru Asada,et al.  Vision-based servoing control for legged robots , 1997, Proceedings of International Conference on Robotics and Automation.

[63]  Myung Jin Chung,et al.  Image space trajectory generation for image-based visual servoing under large pose error , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[64]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[65]  Jean-Luc Buessler,et al.  Modular neurocontrollers for reaching movements , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[66]  Angel P. del Pobil,et al.  Recent progress in the UJI librarian robot , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[67]  G. Morel,et al.  Impedance based combination of visual and force control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[68]  Jorge Pomares,et al.  Movement-flow-based visual servoing and force control fusion for Manipulation Tasks in unstructured environments , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[69]  Minoru Asada,et al.  Trajectory generation for obstacle avoidance of uncalibrated stereo visual servoing without 3D reconstruction , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.