Information Coding in Reconfigurable DNA Origami Domino Array.

DNA nanostructures with programmable nanoscale patterns has been achieved in the past decades, and molecular information coding (MIC) on those designed nanostructures has gained increasing attention for information security. However, exerting steganography and cryptography synchronously on DNA nanostructures still remains a challenge to guarantee more security approach for MIC. Here, we demonstrated MIC in a reconfigurable DNA origami domino array (DODA), which can reconfigure intrinsic patterns but keep the DODA outline the same for steganography. When a set of keys (DNA strands) are added, the cryptographic data (e.g. Numbers "0 - 9") can be translated into visible patterns within DODA. More complex cryptography with ASCII nanocodes definition within programmable 6×6 lattice is demonstrated to ensure the versatility of MIC in the DODA. Furthermore, a further anti-counterfeiting approach based on conformational transformation mediated toehold strand displacement reaction is designed to protect MIC from decoding and falsification, presenting a unique high-security level approach for information processing.

[1]  Oleg Gang,et al.  Self-organized architectures from assorted DNA-framed nanoparticles. , 2016, Nature chemistry.

[2]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[3]  Friedrich C. Simmel,et al.  Oberflächenunterstützte großflächige Anordnung von DNA‐Origami‐Kacheln , 2014 .

[4]  Jie Song,et al.  Reconfiguration of DNA molecular arrays driven by information relay , 2017, Science.

[5]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[6]  F. Simmel,et al.  Surface-assisted large-scale ordering of DNA origami tiles. , 2014, Angewandte Chemie.

[7]  Paul W K Rothemund,et al.  Erratum: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion , 2014, Nature Communications.

[8]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[9]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[10]  Pascal Lill,et al.  Hierarchical Assembly of DNA Filaments with Designer Elastic Properties. , 2017, ACS nano.

[11]  Hao Yan,et al.  DNA origami with double-stranded DNA as a unified scaffold. , 2012, ACS nano.

[12]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[13]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[14]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[15]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[16]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[17]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[18]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[19]  Hao Yan,et al.  Complex silica composite nanomaterials templated with DNA origami , 2018, Nature.

[20]  Andreas Walther,et al.  3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. , 2016, Nano letters.

[21]  H. Sugiyama,et al.  Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures , 2015, Nature Communications.

[22]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[23]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[24]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[25]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[26]  Victor Pan,et al.  The Beauty and Utility of DNA Origami , 2017 .

[27]  Itamar Willner,et al.  pH-Stimulated Reconfiguration and Structural Isomerization of Origami Dimer and Trimer Systems. , 2016, Nano letters.

[28]  F. Besenbacher,et al.  Self-assembly of DNA origami and single-stranded tile structures at room temperature. , 2013, Angewandte Chemie.

[29]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[30]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[31]  Lei Wang,et al.  Molecular behavior of DNA origami in higher-order self-assembly. , 2010, Journal of the American Chemical Society.

[32]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[33]  Victor Pan,et al.  Design and operation of reconfigurable two-dimensional DNA molecular arrays , 2018, Nature Protocols.

[34]  L. Ceze,et al.  Molecular digital data storage using DNA , 2019, Nature Reviews Genetics.

[35]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[36]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[37]  H. Xin,et al.  Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. , 2015, Nature nanotechnology.

[38]  F. Simmel,et al.  DNA origami-based nanoribbons: assembly, length distribution, and twist , 2011, Nanotechnology.

[39]  Wolfgang Pfeifer,et al.  From Nano to Macro through Hierarchical Self‐Assembly: The DNA Paradigm , 2016, Chembiochem : a European journal of chemical biology.

[40]  Tim Liedl,et al.  Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp , 2016, Science.

[41]  Lei Liu,et al.  Routing of individual polymers in designed patterns. , 2015, Nature nanotechnology.

[42]  M. Zacharias,et al.  Single-molecule dissection of stacking forces in DNA , 2016, Science.

[43]  Casey Grun,et al.  Programmable self-assembly of three-dimensional nanostructures from 104 unique components , 2017, Nature.

[44]  Yonggang Ke,et al.  Dynamic DNA Structures. , 2019, Small.

[45]  Carlos E Castro,et al.  Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers , 2018, Nature Communications.

[46]  Jie Chao,et al.  DNA origami cryptography for secure communication , 2019, Nature Communications.

[47]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[48]  Ebbe Sloth Andersen,et al.  Control of enzyme reactions by a reconfigurable DNA nanovault , 2017, Nature Communications.

[49]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[50]  Jin Cheng,et al.  Create Nanoscale Patterns with DNA Origami. , 2019, Small.

[51]  Adrian Keller,et al.  Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces. , 2018, ACS applied materials & interfaces.

[52]  Hai-Jun Su,et al.  Direct design of an energy landscape with bistable DNA origami mechanisms. , 2015, Nano letters.

[53]  Yi Lu,et al.  Nano-encrypted Morse code: a versatile approach to programmable and reversible nanoscale assembly and disassembly. , 2013, Journal of the American Chemical Society.

[54]  Yangyang Yang,et al.  Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. , 2012, Journal of the American Chemical Society.

[55]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[56]  Friedrich C Simmel,et al.  A self-assembled nanoscale robotic arm controlled by electric fields , 2018, Science.

[57]  Lulu Qian,et al.  Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns , 2017, Nature.

[58]  H. Sugiyama,et al.  Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking. , 2018, Angewandte Chemie.

[59]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[60]  Lulu Qian,et al.  Programmable disorder in random DNA tilings. , 2017, Nature nanotechnology.

[61]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[62]  Peng Yin,et al.  Optical visualisation of individual biomolecules in densely packed clusters , 2016 .

[63]  N. Seeman,et al.  DNA junctions, antijunctions, and mesojunctions. , 1992, Biochemistry.

[64]  Na Liu,et al.  Selective control of reconfigurable chiral plasmonic metamolecules , 2017, Science Advances.

[65]  Friedrich C. Simmel,et al.  Membrane-Assisted Growth of DNA Origami Nanostructure Arrays , 2015, ACS nano.