Multi-objective Genetic Algorithms for grouping problems

Linear Linkage Encoding (LLE) is a convenient representational scheme for Genetic Algorithms (GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in data clustering. One-point crossover has been utilized in these applications. In fact, the standard recombination operators are not suitable to be used with LLE. These operators can easily disturb the building blocks and cannot fully exploit the power of the representation. In this study, a new crossover operator is introduced for LLE. The operator which is named as group-crossover is tested on the data clustering problem and a very significant performance increase is obtained compared to classical one-point and uniform crossover operations. Graph coloring is the second domain where the proposed framework is tested. This is a challenging combinatorial optimization problem for search methods and no significant success has been obtained on the problem with pure GA. The experimental results denote that GAs powered with LLE can provide satisfactory outcomes in this domain, too.

[1]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[2]  Riccardo Poli,et al.  Product Geometric Crossover , 2006, PPSN.

[3]  Christine L. Mumford New Order-Based Crossovers for the Graph Coloring Problem , 2006, PPSN.

[4]  Valmir Carneiro Barbosa,et al.  Two Novel Evolutionary Formulations of the Graph Coloring Problem , 2003, J. Comb. Optim..

[5]  Emin Erkan Korkmaz,et al.  A Two-Level Clustering Method Using Linear Linkage Encoding , 2006, PPSN.

[6]  Pasi Fränti,et al.  Fast Agglomerative Clustering Using a k-Nearest Neighbor Graph , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Wan Chul Yoon,et al.  A classification method using a hybrid genetic algorithm combined with an adaptive procedure for the pool of ellipsoids , 2006, Applied Intelligence.

[8]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  M. Narasimha Murty,et al.  Clustering Based on Genetic Algorithms , 2008, Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases.

[11]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[12]  Steven Guan,et al.  Clustering and combinatorial optimization in recursive supervised learning , 2006, J. Comb. Optim..

[13]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[14]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[15]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[16]  Fred W. Glover,et al.  Coloring by tabu branch and bound , 1993, Cliques, Coloring, and Satisfiability.

[17]  M. Narasimha Murty,et al.  A near-optimal initial seed value selection in K-means means algorithm using a genetic algorithm , 1993, Pattern Recognit. Lett..

[18]  Miodrag Potkonjak,et al.  Efficient coloring of a large spectrum of graphs , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[19]  Donald R. Jones,et al.  Solving Partitioning Problems with Genetic Algorithms , 1991, International Conference on Genetic Algorithms.

[20]  Olli Nevalainen,et al.  Self-Adaptive Genetic Algorithm for Clustering , 2003, J. Heuristics.

[21]  James C. Bezdek,et al.  Genetic algorithm guided clustering , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[22]  Rowena Cole,et al.  Clustering with genetic algorithms , 1998 .

[23]  Jun Du,et al.  Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering , 2006, Intell. Data Anal..

[24]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Ali M. S. Zalzala,et al.  A genetic rule-based data clustering toolkit , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[26]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[27]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[28]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[29]  Reda Alhajj,et al.  Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives , 2004 .

[30]  H. Eskandari,et al.  A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems , 2008, J. Heuristics.

[31]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[32]  Ender Özcan,et al.  Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling , 2006, PATAT.

[33]  Tabitha L. James,et al.  A hybrid grouping genetic algorithm for the cell formation problem , 2007, Comput. Oper. Res..

[34]  Francisco Azuaje,et al.  Cluster validation techniques for genome expression data , 2003, Signal Process..

[35]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[36]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[37]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[38]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[39]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .