A New Genome-Wide Method to Track Horizontally Transferred Sequences: Application to Drosophila

Because of methodological breakthroughs and the availability of an increasing amount of whole-genome sequence data, horizontal transfers (HTs) in eukaryotes have received much attention recently. Contrary to similar analyses in prokaryotes, most studies in eukaryotes usually investigate particular sequences corresponding to transposable elements (TEs), neglecting the other components of the genome. We present a new methodological framework for the genome-wide detection of all putative horizontally transferred sequences between two species that requires no prior knowledge of the transferred sequences. This method provides a broader picture of HTs in eukaryotes by fully exploiting complete-genome sequence data. In contrast to previous genome-wide approaches, we used a well-defined statistical framework to control for the number of false positives in the results, and we propose two new validation procedures to control for confounding factors. The first validation procedure relies on a comparative analysis with other species of the phylogeny to validate HTs for the nonrepeated sequences detected, whereas the second one built upon the study of the dynamics of the detected TEs. We applied our method to two closely related Drosophila species, Drosophila melanogaster and D. simulans, in which we discovered 10 new HTs in addition to all the HTs previously detected in different studies, which underscores our method’s high sensitivity and specificity. Our results favor the hypothesis of multiple independent HTs of TEs while unraveling a small portion of the network of HTs in the Drosophila phylogeny.

[1]  M. Batzer,et al.  Repetitive Elements May Comprise Over Two-Thirds of the Human Genome , 2011, PLoS genetics.

[2]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[3]  Sònia Casillas,et al.  Purifying selection maintains highly conserved noncoding sequences in Drosophila. , 2007, Molecular biology and evolution.

[4]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[5]  M. W. Young,et al.  Differing levels of dispersed repetitive DNA among closely related species of Drosophila. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Vogel,et al.  Horizontal Gene Transfer Regulation in Bacteria as a “Spandrel” of DNA Repair Mechanisms , 2007, PloS one.

[7]  Distinct groups of repetitive families preserved in mammals correspond to different periods of regulatory innovations in vertebrates , 2012, Biology Direct.

[8]  D. Crook,et al.  Genomic islands: tools of bacterial horizontal gene transfer and evolution , 2008, FEMS microbiology reviews.

[9]  C. Feschotte,et al.  A role for host–parasite interactions in the horizontal transfer of transposons across phyla , 2010, Nature.

[10]  Adam C. Siepel,et al.  PHAST and RPHAST: phylogenetic analysis with space/time models , 2011, Briefings Bioinform..

[11]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[13]  D. Finnegan,et al.  Transposable elements: How non-LTR retrotransposons do it , 1997, Current Biology.

[14]  C. Vieira,et al.  Wake up of transposable elements following Drosophila simulans worldwide colonization. , 1999, Molecular biology and evolution.

[15]  M. Ragan Detection of lateral gene transfer among microbial genomes. , 2001, Current opinion in genetics & development.

[16]  C. Vieira,et al.  Vertical inheritance and bursts of transposition have shaped the evolution of the BS non-LTR retrotransposon in Drosophila , 2011, Molecular Genetics and Genomics.

[17]  Xabier Bello,et al.  Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes , 2008, Genome Biology.

[18]  Kevin R. Thornton,et al.  A second-generation assembly of the Drosophila simulans genome provides new insights into patterns of lineage-specific divergence , 2013, Genome research.

[19]  M. P. Guerreiro,et al.  What makes transposable elements move in the Drosophila genome? , 2011, Heredity.

[20]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[21]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[22]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[23]  M. Ashburner,et al.  Historical Biogeography of the Drosophila melanogaster Species Subgroup , 1988 .

[24]  D. Haussler,et al.  Article Identification and Characterization of Multi-Species Conserved Sequences , 2022 .

[25]  Paul C. Leyland,et al.  FlyBase: improvements to the bibliography , 2012, Nucleic Acids Res..

[26]  E. L. Loreto,et al.  Methods for detection of horizontal transfer of transposable elements in complete genomes , 2012, Genetics and molecular biology.

[27]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[28]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Andreas Wagner,et al.  Evolutionary dynamics of the LTR retrotransposons roo and rooA inferred from twelve complete Drosophila genomes , 2009, BMC Evolutionary Biology.

[30]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[31]  D. Schluter,et al.  Calibrating the avian molecular clock , 2008, Molecular ecology.

[32]  M. F. Ortiz,et al.  Horizontal Transposon Transfer in Eukarya: Detection, Bias, and Perspectives , 2012, Genome biology and evolution.

[33]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[34]  J. Andersson,et al.  Lateral gene transfer in eukaryotes , 2005, Cellular and Molecular Life Sciences CMLS.

[35]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[36]  Sophie S Abby,et al.  Lateral gene transfer as a support for the tree of life , 2012, Proceedings of the National Academy of Sciences.

[37]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[38]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[39]  C. Vieira,et al.  Transposable Element Dynamics in Two Sibling Species: Drosophila Melanogaster and Drosophila Simulans , 2004, Genetica.

[40]  Yuriy Fofanov,et al.  A computational tool for the genomic identification of regions of unusual compositional properties and its utilization in the detection of horizontally transferred sequences. , 2006, Molecular biology and evolution.

[41]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[42]  Rajeev K. Azad,et al.  Towards more robust methods of alien gene detection , 2011, Nucleic acids research.

[43]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[44]  P. Capy,et al.  The First Steps of Transposable Elements Invasion , 2005, Genetics.

[45]  J. Jurka,et al.  Families of transposable elements, population structure and the origin of species , 2011, Biology Direct.

[46]  S. Kingan,et al.  A selective sweep across species boundaries in Drosophila. , 2013, Molecular biology and evolution.

[47]  S. Mousset,et al.  Molecular Polymorphism in Drosophila Melanogaster and D. Simulans: what have we Learned from Recent Studies? , 2004, Genetica.

[48]  C. Feschotte,et al.  Horizontal transfer of OC1 transposons in the Tasmanian devil , 2013, BMC Genomics.

[49]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[50]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[51]  A. Le Rouzic,et al.  Reconstructing the Evolutionary History of Transposable Elements , 2012, Genome biology and evolution.

[52]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[53]  Ilan Gronau,et al.  Inference of natural selection from interspersed genomic elements based on polymorphism and divergence. , 2011, Molecular biology and evolution.

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[56]  C. M. Carareto Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus , 2011, Mobile genetic elements.

[57]  Robert Kofler,et al.  Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster , 2012, PLoS genetics.

[58]  W. Miller,et al.  The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes , 2001, Chromosoma.

[59]  J. Drezen,et al.  Transfer of a chromosomal Maverick to endogenous bracovirus in a parasitoid wasp , 2011, Genetica.

[60]  C. M. Carareto,et al.  Ancestral polymorphism and recent invasion of transposable elements in Drosophila species , 2012, BMC Evolutionary Biology.

[61]  C. Schlötterer,et al.  African Drosophila melanogaster and D. simulans Populations Have Similar Levels of Sequence Variability, Suggesting Comparable Effective Population Sizes , 2008, Genetics.

[62]  Terry Gaasterland,et al.  DarkHorse: a method for genome-wide prediction of horizontal gene transfer , 2007, Genome Biology.

[63]  R. Cordaux,et al.  Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes , 2013, Genome biology and evolution.

[64]  C. Ponting,et al.  Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. , 2007, Genome research.

[65]  I. Boussy,et al.  Distribution of hobo transposable elements in the genus Drosophila. , 1990, Molecular biology and evolution.

[66]  D. Ding,et al.  Identification and categorization of horizontally transferred genes in prokaryotic genomes. , 2005, Acta biochimica et biophysica Sinica.

[67]  Wenguang Sun,et al.  Large‐scale multiple testing under dependence , 2009 .

[68]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[69]  Sudhir Kumar,et al.  Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. , 2003, Molecular biology and evolution.

[70]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[71]  Derek Y. Chiang,et al.  Integrating Prior Knowledge in Multiple Testing under Dependence with Applications to Detecting Differential DNA Methylation , 2012, Biometrics.

[72]  T. Karr,et al.  Genetics of Hybrid Inviability and Sterility in Drosophila: Dissection of Introgression of D. simulans Genes in D. melanogaster Genome , 2004, Genetica.

[73]  Hiroki Saito,et al.  Unexpected consequences of a sudden and massive transposon amplification on rice gene expression , 2009, Nature.

[74]  D. Anxolabéhère,et al.  The strange phylogenies of transposable elements: are horizontal transfers the only explantation? , 1994, Trends in genetics : TIG.

[75]  D. Barbash Anecdotal , Historical and Critical Commentaries on Genetics Ninety Years of Drosophila melanogaster Hybrids , 2010 .

[76]  Emmanuelle Lerat,et al.  Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. , 2011, Gene.

[77]  D. Anxolabéhère,et al.  Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. , 1988, Molecular biology and evolution.

[78]  Vincent Berry,et al.  Models, algorithms and programs for phylogeny reconciliation , 2011, Briefings Bioinform..

[79]  M. G. Kidwell,et al.  Evidence for horizontal transmission of the P transposable element between Drosophila species. , 1990, Genetics.

[80]  P. Capy,et al.  Revisiting horizontal transfer of transposable elements in Drosophila , 2008, Heredity.

[81]  W. Stephan,et al.  The recent demographic and adaptive history of Drosophila melanogaster⋆ , 2007, Heredity.

[82]  Emmanuelle Lerat,et al.  Sequence divergence within transposable element families in the Drosophila melanogaster genome. , 2003, Genome research.

[83]  Jonathan B. Clark,et al.  Factors that affect the horizontal transfer of transposable elements. , 2004, Current issues in molecular biology.

[84]  A. Ludwig,et al.  Multiple invasions of Errantivirus in the genus Drosophila , 2008, Insect molecular biology.

[85]  P. Haccou,et al.  Quantifying introgression risk with realistic population genetics , 2012, Proceedings of the Royal Society B: Biological Sciences.

[86]  Cédric Feschotte,et al.  Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. , 2010, Trends in ecology & evolution.

[87]  C. Feschotte,et al.  Horizontal SPINning of transposons , 2009, Communicative & integrative biology.

[88]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[89]  H. Finner,et al.  Multiple hypotheses testing and expected number of type I. errors , 2002 .

[90]  J. Welch,et al.  Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally , 2009, Proceedings of the Royal Society B: Biological Sciences.

[91]  D. O’brochta,et al.  Transpositionally active episomal hAT elements , 2009, BMC Molecular Biology.

[92]  C. Vieira,et al.  Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans. , 1997, Molecular biology and evolution.

[93]  D. Lisch A new SPIN on horizontal transfer , 2008, Proceedings of the National Academy of Sciences.

[94]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[95]  C. Vieira,et al.  Evolution of genome size in Drosophila. is the invader's genome being invaded by transposable elements? , 2002, Molecular biology and evolution.

[96]  Mikhail A. Roytberg,et al.  Analysis of Sequence Conservation at Nucleotide Resolution , 2007, PLoS Comput. Biol..

[97]  Kai Wang,et al.  Multiple testing in genome-wide association studies via hidden Markov models , 2009, Bioinform..

[98]  J. Brosius,et al.  Rodent BC1 RNA gene as a master gene for ID element amplification. , 1994, Proceedings of the National Academy of Sciences of the United States of America.