Molecular Dynamics Simulations of Shock Waves in Mixtures of Noble Gases

We study the structure of a normal shock wave in noble gas mixtures (Xe-He and Ar-He) of various compositions using molecular dynamics and direct simulation Monte Carlo. The molecular dynamics simulations are first validated against experimental data. Good agreement is found between the molecular dynamics solutions and the experimental measurements, with the exception of the parallel temperature profile in the 24.7% Ar-He mixture, despite the satisfactory agreement between the parallel velocity profiles. Secondly, a validation against direct simulation Monte Carlo solutions obtained with the accurate generalized hard sphere model is presented. As expected, the generalized hard sphere direct simulation Monte Carlo and molecular dynamics solutions are in near-perfect agreement. Finally, molecular dynamics results are compared to those obtained with the lower fidelity variable hard sphere model, which, if inappropriately parametrized, fails to describe the shock wave structure. This work exemplifies how full...

[1]  E. Muntz,et al.  Experimental Investigation of Normal Shock Wave Velocity Distribution Functions in Mixtures of Argon and Helium , 1972 .

[2]  H. Alsmeyer,et al.  Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam , 1976, Journal of Fluid Mechanics.

[3]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[4]  Salomons,et al.  Usefulness of the Burnett description of strong shock waves. , 1992, Physical review letters.

[5]  Hiroaki Matsumoto,et al.  Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones potential , 1991 .

[6]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[7]  Paolo Valentini,et al.  GPU-accelerated Classical Trajectory Calculation Direct Simulation Monte Carlo applied to shock waves , 2013, J. Comput. Phys..

[8]  DSMC Collision Model for the Lennard-Jones Potential: Efficient Algorithm and Verification , 2011 .

[9]  Katsuhisa Koura,et al.  Monte Carlo direct simulation of rotational relaxation of nitrogen through high total temperature shock waves using classical trajectory calculations , 1998 .

[10]  The GHS interaction model for strong attractive potentials , 1995 .

[11]  Hiroaki Matsumoto,et al.  Variable soft sphere molecular model for air species , 1992 .

[12]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[13]  Thomas E. Schwartzentruber,et al.  Particle Simulations of Planetary Probe Flows Employing Automated Mesh Refinement , 2011 .

[14]  Hiroaki Matsumoto,et al.  Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential , 1991 .

[15]  Yoichiro Matsumoto,et al.  Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method , 1999 .

[16]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[17]  Thomas E. Schwartzentruber,et al.  Progress and Future Prospects for Particle-Based Simulation of Hypersonic Flow , 2013 .

[18]  Jing Fan,et al.  A generalized soft-sphere model for Monte Carlo simulation , 2002 .

[19]  Katsuhisa Koura,et al.  4 Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave , 1997 .

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  Stefan Schlamp,et al.  Higher moments of the velocity distribution function in dense-gas shocks , 2007, J. Comput. Phys..

[22]  P. Coveney,et al.  Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Holian Modeling shock-wave deformation via molecular dynamics. , 1988, Physical review. A, General physics.

[24]  Hassan Hassan,et al.  A generalized hard‐sphere model for Monte Carlo simulation , 1993 .

[25]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[26]  Michael N. Macrossan,et al.  v -DSMV: a fast simulation method for rarefield flow , 2001 .

[27]  Paolo Valentini,et al.  Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models , 2012 .

[28]  T. Schwartzentruber,et al.  Nonequilibrium-Direction-Dependent Rotational Energy Model for Use in Continuum and Stochastic Molecular Simulation , 2014 .

[29]  Graeme A. Bird,et al.  Forty years of DSMC, and now? , 2002 .

[30]  Paolo Valentini,et al.  Large-scale molecular dynamics simulations of normal shock waves in dilute argon , 2009 .

[31]  Hiroaki Matsumoto,et al.  Variable sphere molecular model for inverse power law and Lennard-Jones potentials in Monte Carlo simulations , 2002 .

[32]  Paolo Valentini,et al.  A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases , 2009, J. Comput. Phys..

[33]  Giovanni Russo,et al.  Numerical solutions of the Boltzmann equation: comparison of different algorithms , 2008 .

[34]  Swapnil C. Kohale,et al.  A unified model for simulating liquid and gas phase, intermolecular energy transfer: N₂ + C₆F₆ collisions. , 2014, The Journal of chemical physics.