Identification of MultiObject Dynamical Systems: Consistency and Fisher Information

Learning the model parameters of a multi-object dynamical system from partial and perturbed observations is a challenging task. Despite recent numerical advancements in learning these parameters, theoretical guarantees are extremely scarce. In this article, we study the identifiability of these parameters and the consistency of the corresponding maximum likelihood estimate (MLE) under assumptions on the different components of the underlying multi-object system. In order to understand the impact of the various sources of observation noise on the ability to learn the model parameters, we study the asymptotic variance of the MLE through the associated Fisher information matrix. For example, we show that specific aspects of the multi-target tracking (MTT) problem such as detection failures and unknown data association lead to a loss of information which is quantified in special cases of interest.

[1]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[2]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[4]  Thomas C.M. Lee,et al.  Statistical consistency of the data association problem in multiple target tracking , 2011 .

[5]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[6]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[7]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[8]  Meir Feder,et al.  Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking , 1999, IEEE Trans. Signal Process..

[9]  R. Douc,et al.  Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime , 2004, math/0503681.

[10]  S. Shankar Sastry,et al.  Markov Chain Monte Carlo Data Association for Multi-Target Tracking , 2009, IEEE Transactions on Automatic Control.

[11]  Sumeetpal S. Singh,et al.  Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2011 .

[12]  Xin Zhang,et al.  Dynamic Cramer-Rao bound for target tracking in clutter , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Pierre Del Moral,et al.  Particle Association Measures and Multiple Target Tracking , 2015 .

[14]  Sinan Yildirim,et al.  Bayesian Tracking and Parameter Learning for Non-Linear Multiple Target Tracking Models , 2014, IEEE Transactions on Signal Processing.

[15]  Peter Willett,et al.  Matrix CRLB scaling due to measurements of uncertain origin , 2001, IEEE Trans. Signal Process..

[16]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[17]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[18]  Pierre Del Moral,et al.  Mean Field Simulation for Monte Carlo Integration , 2013 .

[19]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[20]  William J. Godinez,et al.  Objective comparison of particle tracking methods , 2014, Nature Methods.

[21]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[22]  A. Doucet,et al.  Particle filtering for multi-target tracking and sensor management , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[23]  B. Leroux Maximum-likelihood estimation for hidden Markov models , 1992 .

[24]  Sinan Yildirim,et al.  Calibrating the Gaussian multi-target tracking model , 2014, Statistics and Computing.

[25]  Pierre Del Moral,et al.  Mean-Field PHD Filters Based on Generalized Feynman-Kac Flow , 2013, IEEE Journal of Selected Topics in Signal Processing.

[26]  C. Hue,et al.  Posterior Cramer-Rao bounds for multi-target tracking , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Daniel E. Clark,et al.  Tracking with MIMO sonar systems: applications to harbour surveillance , 2017 .

[28]  Sumeetpal S. Singh,et al.  Bayesian Time Series Models: Approximate likelihood estimation of static parameters in multi-target models , 2011 .