Symmetry in Scalar Field Topology

Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.

[1]  Xiaoyu Zhang,et al.  Application of New Multiresolution Methods for the Comparison of Biomolecular Electrostatic Properties in the Absence of Global Structural Similarity , 2006, Multiscale Model. Simul..

[2]  Evangelos Kalogerakis,et al.  Folding meshes: hierarchical mesh segmentation based on planar symmetry , 2006, SGP '06.

[3]  Szymon Rusinkiewicz,et al.  Eurographics Symposium on Geometry Processing (2007) Symmetry-enhanced Remeshing of Surfaces , 2022 .

[4]  John B. Bell,et al.  A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion , 2009, 2009 Fifth IEEE International Conference on e-Science.

[5]  Silvia Biasotti,et al.  Sub-part correspondence by structural descriptors of 3D shapes , 2006, Comput. Aided Des..

[6]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[7]  Nina Amenta,et al.  Closed‐form Blending of Local Symmetries , 2010, Comput. Graph. Forum.

[8]  Seiji Ishikawa,et al.  Symmetry Identification of a 3-D Object Represented by Octree , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jack Snoeyink,et al.  Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree , 2010, Comput. Geom..

[10]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[11]  Mikhail J. Atallah,et al.  On Symmetry Detection , 1985, IEEE Transactions on Computers.

[12]  Jack Snoeyink,et al.  Path Seeds and Flexible Isosurfaces - Using Topology for Exploratory Visualization , 2003, VisSym.

[13]  Silvia Biasotti,et al.  Sub-part correspondence using structure and geometry , 2006, European Interdisciplinary Cybersecurity Conference.

[14]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[15]  Jianlong Zhou,et al.  Automatic Transfer Function Generation Using Contour Tree Controlled Residue Flow Model and Color Harmonics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[16]  Hans-Peter Seidel,et al.  A Graph-Based Approach to Symmetry Detection , 2008, VG/PBG@SIGGRAPH.

[17]  Raif M. Rustamov,et al.  Augmented planar reflective symmetry transform , 2008, The Visual Computer.

[18]  Xiaoyu Zhang Complementary Shape Comparison with Additional Properties , 2006, VG@SIGGRAPH.

[19]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[20]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.

[21]  Bernd Hamann,et al.  Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration , 2009, Mathematics and Visualization.

[22]  Gerik Scheuermann,et al.  Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[24]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor for 3D Models , 2003, Algorithmica.

[25]  Alexander M. Bronstein,et al.  Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[26]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[27]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2022 .

[28]  Mohamed Daoudi,et al.  Partial 3D Shape Retrieval by Reeb Pattern Unfolding , 2009, Comput. Graph. Forum.

[29]  François X. Sillion,et al.  Accurate detection of symmetries in 3D shapes , 2006, TOGS.

[30]  Horst Bunke,et al.  Determination of the Symmetries of Polyhedra and an Application to Object Recognition , 1991, Workshop on Computational Geometry.

[31]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[32]  Ü XiaoyuZhang Complementary Shape Comparison with Additional Properties , 2006 .

[33]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[34]  Vijay Natarajan,et al.  Output-Sensitive Construction of Reeb Graphs , 2012, IEEE Transactions on Visualization and Computer Graphics.

[35]  Chandrajit L. Bajaj,et al.  Affine Invariant Comparison of Molecular Shapes with Properties , 2006 .

[36]  Alexander M. Bronstein,et al.  Topology-Invariant Similarity of Nonrigid Shapes , 2009, International Journal of Computer Vision.

[37]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[38]  Valerio Pascucci,et al.  Topological Landscapes: A Terrain Metaphor for Scientific Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[39]  Han-Wei Shen,et al.  Parallel reflective symmetry transformation for volume data , 2007, Comput. Graph..

[40]  Richard A. Volz,et al.  Optimal algorithms for symmetry detection in two and three dimensions , 1985, The Visual Computer.

[41]  Sebastian Thrun,et al.  Shape from symmetry , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[42]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, ACM Trans. Graph..

[43]  Valerio Pascucci,et al.  The TOPORRERY: computation and presentation of multi-resolution topology , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[44]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[45]  Christian Knauer,et al.  Testing congruence and symmetry for general 3-dimensional objects , 2004, Comput. Geom..

[46]  Mohamed Daoudi,et al.  Topology driven 3D mesh hierarchical segmentation , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[47]  Yusu Wang,et al.  Topological Landscape Ensembles for Visualization of Scalar‐Valued Functions , 2010, Comput. Graph. Forum.

[48]  Niloy J. Mitra,et al.  Intrinsic Regularity Detection in 3D Geometry , 2010, ECCV.

[49]  Ken Museth,et al.  Flexible And Topologically Localized Segmentation , 2007, EuroVis.

[50]  Gerik Scheuermann,et al.  Interactive Comparison of Scalar Fields Based on Largest Contours with Applications to Flow Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[51]  Thomas A. Funkhouser,et al.  Symmetry-Aware Mesh Processing , 2009, IMA Conference on the Mathematics of Surfaces.

[52]  Ligang Liu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, ACM Trans. Graph..