Optimal linear transmission by loss-insensitive packet encoding☆

[1]  C. Godsil,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2005, Eur. J. Comb..

[2]  V. Paulsen,et al.  Decoherence-Insensitive Quantum Communication by Optimal $C^{\ast }$-Encoding , 2006, IEEE Transactions on Information Theory.

[3]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[4]  Deepti Kalra Complex equiangular cyclic frames and erasures , 2006, math/0602342.

[5]  Wenchang Sun G-frames and G-Riesz Bases ⁄ , 2005, math/0508104.

[6]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[7]  Jelena Kovacevic,et al.  Real, tight frames with maximal robustness to erasures , 2005, Data Compression Conference.

[8]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[9]  V. Paulsen,et al.  Frames, graphs and erasures , 2004, math/0406134.

[10]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[11]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .

[12]  Peter Oswald Frames and Space Splittings in Hilbert Spaces , 2004 .

[13]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[14]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[15]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[16]  Vivek K. Goyal,et al.  Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.

[17]  R. Kadison,et al.  The Pythagorean Theorem: I. The finite case , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[19]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[20]  Chris D. Godsil,et al.  Distance regular covers of the complete graph , 1992, J. Comb. Theory, Ser. B.

[21]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[22]  J. Seidel,et al.  Equi-isoclinic subspaces of Euclidean spaces , 1973 .