Fluxon-based quantum simulation in circuit QED

Long-lived fluxon excitations can be trapped inside a superinductor ring, which is divided into an array of loops by a periodic sequence of Josephson junctions in the quantum regime, thereby allowing fluxons to tunnel between neighboring sites. By tuning the Josephson couplings, and implicitly the fluxon tunneling probability amplitudes, a wide class of 1D tight-binding lattice models may be implemented and populated with a stable number of fluxons. We illustrate the use of this quantum simulation platform by discussing the Su-Schrieffer-Heeger model in the 1-fluxon subspace, which hosts a symmetry protected topological phase with fractionally charged bound states at the edges. This pair of localized edge states could be used to implement a superconducting qubit increasingly decoupled from decoherence mechanisms.

[1]  I. Pop,et al.  Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum. , 2018, Physical review letters.

[2]  W. Wernsdorfer,et al.  Circuit quantum electrodynamics of granular aluminum resonators , 2018, Nature Communications.

[3]  K. L. Hur,et al.  Topological Zak phase in strongly coupled LC circuits , 2017, 1711.02034.

[4]  Thomas M Stace,et al.  Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions. , 2017, Physical review letters.

[5]  Y. Gefen,et al.  Emulating Majorana fermions and their braiding by Ising spin chains , 2017, 1703.08224.

[6]  I. McCulloch,et al.  Precursor of the Laughlin state of hard-core bosons on a two-leg ladder , 2016, 1612.05134.

[7]  Michael Marthaler,et al.  Analog quantum simulation of the Rabi model in the ultra-strong coupling regime , 2016, Nature Communications.

[8]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[9]  Uri Vool,et al.  Introduction to quantum electromagnetic circuits , 2016, Int. J. Circuit Theory Appl..

[10]  R. T. Brierley,et al.  Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment , 2016, 1610.01094.

[11]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[12]  Yvonne Y Gao,et al.  Suspending superconducting qubits by silicon micromachining , 2016, 1606.02822.

[13]  M. Weides,et al.  Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits , 2016, 1602.05600.

[14]  L. Frunzio,et al.  Quantization of inductively shunted superconducting circuits , 2016, 1602.01793.

[15]  M. A. Yurtalan,et al.  Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime , 2016, Nature Physics.

[16]  Shiro Saito,et al.  Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime , 2016, Nature Physics.

[17]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[18]  I. Siddiqi,et al.  Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits. , 2015, Physical review letters.

[19]  R. T. Brierley,et al.  Signatures of quantum phase transitions in the dynamic response of fluxonium qubit chains , 2015, 1507.06320.

[20]  G. Roux,et al.  Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light , 2015, 1505.00167.

[21]  Wenyuan Zhang,et al.  Spectroscopic Evidence of the Aharonov-Casher Effect in a Cooper Pair Box. , 2015, Physical review letters.

[22]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[23]  Hakan E. Tureci,et al.  Photon-mediated interactions: a scalable tool to create and sustain entangled many-body states , 2014, 1412.8477.

[24]  R. J. Schoelkopf,et al.  Confining the state of light to a quantum manifold by engineered two-photon loss , 2014, Science.

[25]  I. McCulloch,et al.  Vortex and Meissner phases of strongly interacting bosons on a two-leg ladder , 2014, 1409.7016.

[26]  Dmitri V. Averin,et al.  nSQUID arrays as conveyers of quantum information , 2014, 1409.1297.

[27]  A. Bezryadin,et al.  Formation of Quantum Phase Slip Pairs in Superconducting Nanowires , 2014, 1406.5128.

[28]  Hakan E. Tureci,et al.  Steady-state entanglement of spatially separated qubits via quantum bath engineering , 2014, 1403.6474.

[29]  Jens Koch,et al.  Understanding degenerate ground states of a protected quantum circuit in the presence of disorder , 2014, 1402.7310.

[30]  K. Le Hur,et al.  Bosonic Mott insulator with Meissner currents. , 2013, Physical review letters.

[31]  Detlef Beckmann,et al.  Fluxon readout of a superconducting qubit. , 2013, Physical review letters.

[32]  John Preskill,et al.  Protected gates for superconducting qubits , 2013, 1302.4122.

[33]  J. Koch,et al.  Circuit QED lattices: Towards quantum simulation with superconducting circuits , 2012, 1212.2070.

[34]  M. Devoret,et al.  Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. , 2012, Physical review letters.

[35]  S. Girvin,et al.  Cavity-assisted quantum bath engineering. , 2012, Physical review letters.

[36]  A. Kitaev,et al.  Quantum superinductor with tunable nonlinearity. , 2012, Physical review letters.

[37]  H. Türeci,et al.  Phase transition of light in cavity QED lattices. , 2012, Physical review letters.

[38]  L. Ioffe,et al.  Coherent quantum phase slip , 2012, Nature.

[39]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[40]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[41]  Andrew D Greentree,et al.  Fractional quantum Hall physics in Jaynes-Cummings-Hubbard lattices. , 2012, Physical review letters.

[42]  X. Wen Symmetry-protected topological phases in noninteracting fermion systems , 2011, 1111.6341.

[43]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[44]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[45]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[46]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010, 1003.2376.

[47]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[48]  J. Koch,et al.  Superfluid–Mott-insulator transition of light in the Jaynes-Cummings lattice , 2009, 0905.4005.

[49]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[50]  Michael J. Hartmann,et al.  Quantum many‐body phenomena in coupled cavity arrays , 2008, 0808.2557.

[51]  Jaeyoon Cho,et al.  Fractional quantum Hall state in coupled cavities. , 2008, Physical review letters.

[52]  L. Ioffe,et al.  Superconducting nanocircuits for topologically protected qubits , 2008, 0802.2295.

[53]  A. Greentree,et al.  Quantum phase transitions in photonic cavities with two-level systems , 2007, 0710.5748.

[54]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[55]  S. Girvin,et al.  Quantum information processing with circuit quantum electrodynamics , 2006, cond-mat/0612038.

[56]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[57]  S. Bose,et al.  Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays , 2006, quant-ph/0606159.

[58]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[59]  V. Semenov,et al.  Rapid ballistic readout for flux qubits , 2005, cond-mat/0510771.

[60]  C. Harmans,et al.  Phase-slip flux qubits , 2005, cond-mat/0508440.

[61]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[62]  A. Wallraff,et al.  Quantum dynamics of a single vortex , 2003, Nature.

[63]  L. Glazman,et al.  Persistent current in superconducting nanorings. , 2002, Physical review letters.

[64]  L. Ioffe,et al.  Possible realization of an ideal quantum computer in Josephson junction array , 2002, cond-mat/0205186.

[65]  M. Jacob,et al.  About Les Houches , 2002 .

[66]  J. Vidal,et al.  Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. , 2002, Physical review letters.

[67]  Shinsei Ryu,et al.  Topological origin of zero-energy edge states in particle-hole symmetric systems. , 2001, Physical review letters.

[68]  Edmond Orignac,et al.  Meissner effect in a bosonic ladder , 2000, cond-mat/0011497.

[69]  R. Fazio,et al.  Quantum phase transitions and vortex dynamics in superconducting networks , 2000, cond-mat/0011152.

[70]  D. Thouless Topological Quantum Numbers in Nonrelativistic Physics , 1998 .

[71]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[72]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[73]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[74]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[75]  Kardar Josephson-junction ladders and quantum fluctuations. , 1986, Physical review. B, Condensed matter.

[76]  A. Vainshtein,et al.  REVIEWS OF TOPICAL PROBLEMS: ABC of instantons , 1982 .

[77]  J. Schrieffer,et al.  Fractionally Charged Excitations in Charge-Density-Wave Systems with Commensurability 3 , 1981 .

[78]  A. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[79]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[80]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[81]  J. E. Zimmerman,et al.  Macroscopic Quantum Interference Effects through Superconducting Point Contacts , 1966 .

[82]  Vinay Ambegaokar,et al.  Tunneling between superconductors , 1963 .

[83]  H. Alloul Introduction to Superconductivity , 2011 .

[84]  E. Sezgin,et al.  Aspects of κ symmetry , 1993 .

[85]  Physical Review Letters 63 , 1989 .

[86]  J. E. Zimmerman,et al.  QUANTUM STATES AND TRANSITIONS IN WEAKLY CONNECTED SUPERCONDUCTING RINGS. , 1967 .

[87]  I. Miyazaki,et al.  AND T , 2022 .