Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone

Highlights • Seafloor geomorphology was important in the structuring of abyssal megafauna.• Differences in megafaunal community ecology were found between all landscape types.• Lower megafauna density & diversity in a bathymetric valley than flat and ridge areas.• Large samples, collected by AUV, were required to make robust ecological conclusions.

[1]  Megafauna , 2021, Encyclopedic Dictionary of Archaeology.

[2]  A. Gooday,et al.  New species of the xenophyophore genus Aschemonella (Rhizaria: Foraminifera) from areas of the abyssal eastern Pacific licensed for polymetallic nodule exploration , 2018 .

[3]  K. Clarke Comparisons of dominance curves , 1990 .

[4]  L. Levin Interactions Between Metazoans and Large, Agglutinating Protozoans: Implications for the Community Structure of Deep-Sea Benthos , 1991 .

[5]  K. Klitgord,et al.  Northern East Pacific Rise' Magnetic Anomaly and Bathymetric Framework , 1982 .

[6]  K. Pye,et al.  GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments , 2001 .

[7]  P. J. Fox,et al.  Volcanic growth faults and the origin of Pacific abyssal hills , 1996, Nature.

[8]  J. Guinan,et al.  Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope , 2007 .

[9]  C. Rodrigues,et al.  The London Workshop on the Biogeography and Connectivity of the Clarion-Clipperton Zone , 2016 .

[10]  A. Boetius,et al.  Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean , 2016, Current Biology.

[11]  Kenneth L. Smith,et al.  Connections between climate, food limitation, and carbon cycling in abyssal sediment communities , 2008, Proceedings of the National Academy of Sciences.

[12]  Roberto Danovaro,et al.  Deep, diverse and definitely different: unique attributes of the world's largest ecosystem , 2010 .

[13]  S. Buckland Introduction to distance sampling : estimating abundance of biological populations , 2001 .

[14]  A. Magurran,et al.  Measuring Biological Diversity , 2004 .

[15]  W. Buck,et al.  Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply , 2015, Science.

[16]  Alex Rogers,et al.  Preservation Reference Areas for Nodule Mining in the Clarion-Clipperton Zone : Rationale and Recommendations , 2008 .

[17]  D. DeMaster,et al.  Effects of giant protozoans (class: Xenophyophorea) on deep-seamount benthos , 1986 .

[18]  W. C. Krumbein,et al.  Application of logarithmic moments to size-frequency distributions of sediments , 1936 .

[19]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[20]  Jens Greinert,et al.  Compact-Morphology-based poly-metallic Nodule Delineation , 2017, Scientific Reports.

[21]  B. Bett,et al.  Direct observation of episodic growth in an abyssal xenophyophore (Protista) , 1993 .

[22]  S. Kasten,et al.  Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion‐Clipperton Fracture Zone , 2014 .

[23]  D. DeMaster,et al.  Phytodetritus at the abyssal seafloor across 10 of latitude in the central equatorial Pacific , 1996 .

[24]  C. Smith,et al.  An End-to-End DNA Taxonomy Methodology for Benthic Biodiversity Survey in the Clarion-Clipperton Zone, Central Pacific Abyss , 2015 .

[25]  P. Stoffers,et al.  Manganese nodule formation in the Pacific Ocean: a general theory , 1982 .

[26]  P. Martínez Arbizu,et al.  Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part I – Amphidiscophora , 2017, Marine Biodiversity.

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  David S.M. Billett,et al.  Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic) , 2001 .

[29]  Peter T. Harris,et al.  Geomorphology of the oceans , 2014 .

[30]  Jennifer M. Durden,et al.  A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model , 2017 .

[31]  I. Murdmaa,et al.  Local variations in distribution and composition of ferromanganese nodules in the Clarion-Clipperton Nodule Province , 1992 .

[32]  V. Grimm,et al.  Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures , 2004 .

[33]  E. Meiburg,et al.  Turbidity currents interacting with three-dimensional seafloor topography , 2014, Journal of Fluid Mechanics.

[34]  A. Gooday,et al.  Giant protists (xenophyophores and komokiaceans) from the Clarion-Clipperton ferromanganese nodule field (eastern Pacific) , 2013, Biology Bulletin Reviews.

[35]  C. Smith,et al.  The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025 , 2003, Environmental Conservation.

[36]  Kevin Köser,et al.  Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data , 2018 .

[37]  R. Lampitt Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension , 1985 .

[38]  Les Watling,et al.  Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria , 2016, Biodiversity data journal.

[39]  Phillip J. Turner,et al.  Biodiversity loss from deep-sea mining , 2017 .

[40]  Adrian G. Glover,et al.  Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone , 2016, Scientific Reports.

[41]  Andrew D. Weiss Topographic position and landforms analysis , 2001 .

[42]  F. Chavez,et al.  Primary production in the eastern tropical Pacific: A review , 2006 .

[43]  Jeffrey C Drazen,et al.  Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca , 2017, Biodiversity data journal.

[44]  Vikki Gunn,et al.  Seabed mining: International Seabed Authority environmental management plan for the Clarion–Clipperton Zone. A partnership approach , 2014 .

[45]  L. Levin,et al.  The ecology of xenophyophores (Protista) on eastern Pacific seamounts , 1988 .

[46]  Reliable sample sizes for estimating similarity among macroinvertebrate assemblages in tropical streams , 2010 .

[47]  Stephen T. Buckland,et al.  Zigzag survey designs in line transect sampling , 2004 .

[48]  C. Heip,et al.  Sample-size dependence of diversity indices and the determination of sufficient sample size in a high-diversity deep-sea environment , 1990 .

[49]  A. Vanreusel,et al.  The Community Structure of Deep-Sea Macrofauna Associated with Polymetallic Nodules in the Eastern Part of the Clarion-Clipperton Fracture Zone , 2017, Front. Mar. Sci..

[50]  E. Mulvey,et al.  Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. , 1995, Psychological bulletin.

[51]  Lene Buhl-Mortensen,et al.  Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins , 2010 .

[52]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[53]  A. Gooday,et al.  Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration , 2017 .

[54]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[55]  G. Belle,et al.  Explicit Calculation of the Rarefaction Diversity Measurement and the Determination of Sufficient Sample Size , 1975 .

[56]  Jens Greinert,et al.  Biological responses to disturbance from simulated deep-sea polymetallic nodule mining , 2017, PloS one.

[57]  Robert K. Colwell,et al.  Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages , 2012 .

[58]  Rk Colwell EstimateS : Statistical estimation of species richness and shared species from samples, v. 8.0. User's guide and application , 2005 .

[59]  J. Sarrazin,et al.  Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution , 2007 .

[60]  Lisa M. Wedding,et al.  Managing mining of the deep seabed , 2015, Science.

[61]  Jennifer M. Durden,et al.  Abyssal hills - hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea , 2015 .

[62]  K. Fauchald,et al.  A DEEP-SEA BENTHIC COMMUNITY EXPOSED TO STRONG NEAR-BOTTOM CURRENTS ON THE SCOTIAN RISE (WESTERN ATLANTIC) , 1985 .

[63]  Daniel O.B. Jones,et al.  Deep‐Sea Benthic Sampling , 2013 .

[64]  T. Brey,et al.  Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis , 2001 .

[65]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[66]  Roger G. Burns,et al.  Pacific Deep-Sea Manganese Nodules: Their Distribution, Composition, and Origin , 1976 .

[67]  Ann Vanreusel,et al.  Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna , 2016, Scientific Reports.

[68]  A. Vanreusel,et al.  Limited Spatial and Temporal Variability in Meiofauna and Nematode Communities at Distant but Environmentally Similar Sites in an Area of Interest for Deep-Sea Mining , 2017, Front. Mar. Sci..

[69]  Scott D. Foster,et al.  Choosing between strategies for designing surveys: autonomous underwater vehicles , 2014 .

[70]  Cindy Lee Van Dover,et al.  Defining “serious harm” to the marine environment in the context of deep-seabed mining , 2016 .

[71]  J. Grassle,et al.  Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples , 1992, The American Naturalist.

[72]  J. Frazer,et al.  Geological factors related to characteristics of sea-floor manganese nodule deposits , 1980 .

[73]  G. Wolff,et al.  Organic matter assimilation and selective feeding by holothurians in the deep sea: some observations and comments , 2001 .

[74]  L. Jost Entropy and diversity , 2006 .

[75]  Y. Pushcharovsky Tectonic types of the Pacific abyssal basins , 2006 .

[76]  N. Andrew,et al.  Sampling and the description of spatial pattern in marine ecology , 1987 .

[77]  J. Hughes,et al.  Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic) , 2004 .

[78]  H. Kayanne,et al.  Rapid direct determination of organic carbon and nitrogen in carbonate‐bearing sediments with a Yanaco MT‐5 CHN analyzer , 1995 .

[79]  Y. Ko,et al.  Characteristics of Seafloor Morphology and Ferromanganese Nodule Occurrence in the Korea Deep-sea Environmental Study (KODES) Area, NE Equatorial Pacific , 2001 .

[80]  Anna B. Neuheimer,et al.  Environmental and bathymetric influences on abyssal bait-attending communities of the Clarion Clipperton Zone , 2017 .

[81]  L. Levin,et al.  ENVIRONMENTAL INFLUENCES ON REGIONAL DEEP-SEA SPECIES DIVERSITY , 2001 .

[82]  A. Vangriesheim,et al.  Temporal variability of near-bottom particle resuspension and dynamics at the Porcupine Abyssal Plain, Northeast Atlantic , 2001 .

[83]  A. Khripounoff,et al.  Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton‐Clarion Fracture Zone (CCFZ) at 5,000‐m depth , 2006 .

[84]  Ken Caldeira,et al.  Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean , 2007 .

[85]  Anne Jordt,et al.  Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding , 2016 .

[86]  M. Rabone,et al.  Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata , 2016, Biodiversity data journal.

[87]  K. Fauchald,et al.  The fauna of the HEBBLE site: patterns in standing stock and sediment-dynamic effects , 1991 .

[88]  R. Freund,et al.  SAS for linear models : a guide to the ANOVA and GLM procedures , 1981 .

[89]  S. Beaulieu Life on glass houses: sponge stalk communities in the deep sea , 2001 .

[90]  M. Fortin,et al.  Spatial pattern and ecological analysis , 1989, Vegetatio.

[91]  L. Levin,et al.  Possible Roles for Xenophyophores in Deep-Sea Carbon Cycling , 1992 .

[92]  Daniel O.B. Jones,et al.  RRS James Cook Cruise JC120 15 Apr - 19 May 2015. Manzanillo to Manzanillo, Mexico. Managing Impacts of Deep-seA resource exploitation (MIDAS): Clarion-Clipperton Zone North Eastern Area of Particular Environmental Interest , 2015 .

[93]  V. Tilot,et al.  The Benthic Megafaunal Assemblages of the CCZ (Eastern Pacific) and an Approach to their Management in the Face of Threatened Anthropogenic Impacts , 2018, Front. Mar. Sci..

[94]  Adrian G. Barnett,et al.  An Introduction to Generalized Linear Models, Third Edition , 1990 .

[95]  C. Smith,et al.  Deep-sea biodiversity and biogeography: perspectives from the abyss , 2006 .

[96]  T. Oji Deep‐Sea Communities , 2007 .

[97]  Jennifer M. Durden,et al.  A new method for ecological surveying of the abyss using autonomous underwater vehicle photography , 2014 .

[98]  Tim W. Nattkemper,et al.  BIIGLE 2.0 - Browsing and Annotating Large Marine Image Collections , 2017, Front. Mar. Sci..

[99]  B. Bett,et al.  Abyssal hills: Influence of topography on benthic foraminiferal assemblages , 2016 .

[100]  A. Dobson An introduction to generalized linear models , 1990 .

[101]  A. Glover,et al.  A new genus and species of abyssal sponge commonly encrusting polymetallic nodules in the Clarion-Clipperton Zone, East Pacific Ocean , 2017 .

[102]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[103]  Jennifer M. Durden,et al.  Comparison of image annotation data generated by multiple investigators for benthic ecology , 2016 .

[104]  A. Gooday,et al.  Abundance and morphology of Paleodictyon nodosum, observed at the Clarion-Clipperton Zone , 2017, Marine Biodiversity.

[105]  F. D. De Leo,et al.  Abyssal food limitation, ecosystem structure and climate change. , 2008, Trends in ecology & evolution.

[106]  M. Sibuet,et al.  Use of lipids to study the trophic ecology of deep-sea xenophyophores , 2004 .

[107]  M. Inall,et al.  Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific , 2017, Scientific Reports.