Lattices, MEbius Functions and Communication Complexity

In a recent paper, Hajnal, Maass and Tura'n analyzed the communication complexity of graph connectivity. Building on this work, we develop a general framework for the study of a broad class of communication problems which has several interesting special cases including the graph connectivity problem. The approach is based on combinatorial lattice theory.

[1]  H. Crapo A higher invariant for matroids , 1967 .

[2]  R. Gallager Information Theory and Reliable Communication , 1968 .

[3]  B. Lindström Determinants on semilattices , 1969 .

[4]  Thomas A. Dowling,et al.  Whitney Number Inequalities for Geometric Lattices , 1975 .

[5]  C. V. Nuffelen,et al.  A Bound for the Chromatic Number of a Graph , 1976 .

[6]  Ronald L. Rivest,et al.  On Recognizing Graph Properties from Adjacency Matrices , 1976, Theor. Comput. Sci..

[7]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[8]  Richard J. Lipton,et al.  Lower bounds for VLSI , 1981, STOC '81.

[9]  Kurt Mehlhorn,et al.  Las Vegas is better than determinism in VLSI and distributed computing (Extended Abstract) , 1982, STOC '82.

[10]  Alfred V. Aho,et al.  On notions of information transfer in VLSI circuits , 1983, STOC.

[11]  Joseph Ja' Ja',et al.  The VLSI Complexity of Selected Graph Problems , 1984 .

[12]  Janos Simon,et al.  Probabilistic Communication Complexity (Preliminary Version) , 1984, FOCS.

[13]  Viktor K. Prasanna,et al.  Information Transfer under Different Sets of Protocols , 1984, SIAM J. Comput..

[14]  Zvi Galil,et al.  Lower bounds on communication complexity , 1984, STOC '84.

[15]  Paul H. Edelman,et al.  The theory of convex geometries , 1985 .

[16]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[17]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[18]  Mihalis Yannakakis,et al.  Expressing combinatorial optimization problems by linear programs , 1991, STOC '88.

[19]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.