Intel Math Kernel Library

In order to achieve optimal performance on multi-core and multi-processor systems, we need to fully use the features of parallelism and manage the memory hierarchical characters efficiently. The performance of sequential codes relies on the instruction-level and register-level SIMD parallelism, and also on high-speed cache-blocking functions. Threading applications need advanced planning to achieve satisfactory load balancing.

[1]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[2]  M. Jöhnk Erzeugung von betaverteilten und gammaverteilten Zufallszahlen , 1964 .

[3]  George Marsaglia,et al.  Uniform Random Number Generators , 1965, JACM.

[4]  I. Väduva,et al.  On computer generation of gamma random variables by rejection and composition procedures 2 , 1977 .

[5]  Russell C. H. Cheng Generating beta variates with nonintegral shape parameters , 1978, CACM.

[6]  A. C. Atkinson A family of switching algorithms for the computer generation of beta random variables , 1979 .

[7]  I. A. Antonov,et al.  An economic method of computing LPτ-sequences , 1979 .

[8]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[9]  Voratas Kachitvichyanukul,et al.  Poisson Random Variate Generation. , 1981 .

[10]  Scott Kirkpatrick,et al.  A very fast shift-register sequence random number generatorjournal of computational physics , 1981 .

[11]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[12]  Voratas Kachitvichyanukul,et al.  Computer generation of hypergeometric random variates , 1985 .

[13]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[14]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[15]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[16]  Voratas Kachitvichyanukul,et al.  Binomial random variate generation , 1988, CACM.

[17]  Jack J. Dongarra,et al.  An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.

[18]  N. M. Maclaren,et al.  The Generation of Multiple Independent Sequences of Pseudorandom Numbers , 1989 .

[19]  A. Neumaier Interval methods for systems of equations , 1990 .

[20]  John G. Lewis,et al.  Algorithm 692: Model implementation and test package for the Sparse Basic Linear Algebra Subprograms , 1991, TOMS.

[21]  John G. Lewis,et al.  Sparse extensions to the FORTRAN Basic Linear Algebra Subprograms , 1991, TOMS.

[22]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[23]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[24]  Makoto Matsumoto,et al.  Twisted GFSR generators , 1992, TOMC.

[25]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[26]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[27]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[28]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[29]  Jean-Michel Muller,et al.  Elementary Functions: Algorithms and Implementation , 1997 .

[30]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[31]  Robert M. Ziff,et al.  Four-tap shift-register-sequence random-number generators , 1998 .

[32]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[33]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[34]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[35]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[36]  Jerome Spanier,et al.  Dynamic creation of pseudorandom number generators , 2000 .

[37]  George Marsaglia,et al.  A simple method for generating gamma variables , 2000, TOMS.