Born's rule from classical random fields

This Letter is an attempt to go beyond QM. In our approach density operators of QM can be represented as covariance operators of classical random fields. Born's rule can be obtained from measurement theory for classical random field under the assumption that the probability of detection of field is proportional to the power of this field.

[1]  Andrei Khrennikov,et al.  Generalizations of Quantum Mechanics Induced by Classical Statistical Field Theory , 2005 .

[2]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[3]  A relativistic variant of the Wigner function , 2003, quant-ph/0304171.

[4]  A. M. Cetto,et al.  SELF-INTERACTION CORRECTIONS IN A NONRELATIVISTIC STOCHASTIC THEORY OF QUANTUM MECHANICS. , 1971 .

[5]  A model for the stochastic origins of Schrödinger’s equation , 1979, quant-ph/0112157.

[6]  Timothy H. Boyer,et al.  The Classical Vacuum. , 1985 .

[7]  A. M. Cetto,et al.  Does quantum mechanics accept a stochastic support? , 1982 .

[8]  Arkady Plotnitsky,et al.  Reading Bohr: Physics and Philosophy , 2006 .

[9]  Timothy H. Boyer,et al.  A Brief Survey of Stochastic Electrodynamics , 1980 .

[10]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[11]  L. Peña‐Auerbach,et al.  NEW FORMULATION OF STOCHASTIC THEORY AND QUANTUM MECHANICS. III. LAGRANGIAN FORMULATION AND ELECTROMAGNETIC COUPLING. , 1969 .

[12]  A dynamical theory of Markovian diffusion , 1979, quant-ph/0110050.

[13]  Luis de la Peña,et al.  The quantum dice : an introduction to stochastic electrodynamics , 1996 .

[14]  A. Barut,et al.  Foundations of radiation theory and quantum electrodynamics , 1980 .

[15]  Andrei Khrennikov,et al.  A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.

[16]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[17]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[18]  Andrei Khrennikov Nonlinear Schrödinger equations from prequantum classical statistical field theory , 2006 .

[19]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .