Control Lyapunov functions and stabilizability of compact sets for hybrid systems

For a class of hybrid systems given in terms of constrained differential and difference equations/inclusions, we define control Lyapunov functions, and study their existence when compact sets are asymptotically stable as well as the stabilizability properties guaranteed when they exist. Recent converse Lyapunov theorems for the class of hybrid systems under study enable us to assert that asymptotic stabilizability of a compact set implies the existence of a smooth control Lyapunov function. When control Lyapunov functions are available, conditions for the existence of continuous state-feedback control laws, both providing practical and global stabilizability properties, are provided.

[1]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[2]  Michael Malisoff,et al.  Constructions of strict Lyapunov functions for discrete time and hybrid time-varying systems , 2006, math/0610210.

[3]  Z. Artstein Stabilization with relaxed controls , 1983 .

[4]  Ludovic Rifford,et al.  Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..

[5]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[6]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[7]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[8]  Chaohong Cai,et al.  Smooth Lyapunov Functions for Hybrid Systems—Part I: Existence Is Equivalent to Robustness , 2007, IEEE Transactions on Automatic Control.

[9]  Eduardo D. Sontag,et al.  General Classes of Control-Lyapunov Functions , 1996 .

[10]  Ludovic Rifford,et al.  On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients , 2001 .

[11]  J. L. Massera Contributions to Stability Theory , 1956 .

[12]  Chaohong Cai,et al.  Smooth Lyapunov Functions for Hybrid Systems Part II: (Pre)Asymptotically Stable Compact Sets , 2008, IEEE Transactions on Automatic Control.

[13]  Andrew R. Teel,et al.  Discrete-time asymptotic controllability implies smooth control-Lyapunov function , 2004, Syst. Control. Lett..

[14]  Jaroslav Kurzweil,et al.  Об обращении второй теоремы Ляпунова об устойчивости движения , 1956 .

[15]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[16]  Eduardo D. Sontag,et al.  Continuous control-Lyapunov functions for asymptotically controllable time-varying systems , 1999 .

[17]  Ricardo G. Sanfelice,et al.  Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability , 2007, IEEE Transactions on Automatic Control.

[18]  R. Sanfelice,et al.  GENERALIZED SOLUTIONS TO HYBRID DYNAMICAL SYSTEMS , 2008 .

[19]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[20]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[21]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[22]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[23]  E. Michael Continuous Selections. I , 1956 .

[24]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[25]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[26]  P. Kokotovic,et al.  CLF based designs with robustness to dynamic input uncertainties , 1999 .

[27]  Andrew R. Teel,et al.  Weak Converse Lyapunov Theorems and Control-Lyapunov Functions , 2003, SIAM J. Control. Optim..

[28]  Wilfrid Perruquetti,et al.  Stabilization of nonaffine systems: a constructive method for polynomial systems , 2005, IEEE Transactions on Automatic Control.