Relaxation dynamics of scale-free polymer networks.

We focus on polymer networks with a scale-free topology. In the framework of generalized Gaussian structures, by making use of the eigenvalue spectrum of the connectivity matrix, we determined numerically the averaged monomer displacement under external forces and the mechanical relaxation moduli (storage and loss modulus). First, we monitor these physical quantities and additionally the eigenvalue spectrum for structures of different sizes, but with the same γ, which is a parameter that measures the connectivity of the structure. Second, we vary the parameter γ, and we keep constant the size of the structures. This allows us to study in detail the crossover behavior from a simple linear chain to a starlike structure. As expected we encounter a more chainlike behavior for high values of γ, while for small values of γ a more starlike behavior is observed. In the intermediate time (frequency) domain, we encounter regions of constant slope for some intermediate values of γ.

[1]  S. N. Dorogovtsev,et al.  Evolution of networks with aging of sites , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Raphael Voituriez,et al.  Close or connected? Distance and connectivity effects on transport in networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  S. Jespersen,et al.  Anomalous diffusion and relaxation in macromolecular systems , 2002 .

[4]  Maxim Dolgushev,et al.  Analytical model for the dynamics of semiflexible dendritic polymers. , 2012, The Journal of chemical physics.

[5]  P. Biswas,et al.  Hydrodynamic effects on the extension of stars and dendrimers in external fields , 2000 .

[6]  J. E. Mark,et al.  The relaxation spectrum for Gaussian networks , 1990 .

[7]  Helmut Schiessel,et al.  Unfold dynamics of generalized Gaussian structures , 1998 .

[8]  L. Gallos,et al.  Absence of kinetic effects in reaction-diffusion processes in scale-free networks. , 2004, Physical review letters.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  S. N. Dorogovtsev,et al.  Scaling Behaviour of Developing and Decaying Networks , 2000, cond-mat/0005050.

[11]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[12]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[13]  T. Koslowski,et al.  Dynamics of deterministic fractal polymer networks: Hydrodynamic interactions and the absence of scaling , 2003 .

[14]  Wu,et al.  Real space Green's function approach to vibrational dynamics of a Vicsek fractal. , 1992, Physical review letters.

[15]  F Jasch,et al.  Dynamics of randomly branched polymers: configuration averages and solvable models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[17]  Alexander Blumen,et al.  Strange kinetics of polymeric networks modelled by finite fractals , 2002 .

[18]  Chengzhen Cai,et al.  Rouse Dynamics of a Dendrimer Model in the ϑ Condition , 1997 .

[19]  Alexander Blumen,et al.  Rouse Dynamics of Polymer Networks Bearing Dendritic Wedges , 2002 .

[20]  Dynamical scaling behavior of percolation clusters in scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Wu,et al.  Exact calculation of the dynamics of a general Vicsek fractal. , 1993, Physical review. B, Condensed matter.

[22]  Maxim Dolgushev,et al.  Dynamics of semiflexible treelike polymeric networks. , 2009, The Journal of chemical physics.

[23]  Alexander Blumen,et al.  Generalized Vicsek Fractals: Regular Hyperbranched Polymers , 2004 .

[24]  G. Raffaini,et al.  Intramolecular Dynamics of Dendrimers under Excluded-Volume Conditions , 2001 .

[25]  B. Zimm Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss , 1956 .

[26]  L. Gallos Random walk and trapping processes on scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Alexander Blumen,et al.  Energy transfer and trapping in regular hyperbranched macromolecules , 2005 .

[28]  R. Pastor-Satorras,et al.  Random walks on complex trees. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[30]  Alexander Blumen,et al.  Dynamics of dendrimer-based polymer networks , 2003 .

[31]  C. von Ferber,et al.  Dynamics of Vicsek fractals, models for hyperbranched polymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Wu,et al.  Dynamics of a Vicsek fractal: The boundary effect and the interplay among the local symmetry, the self-similarity, and the structure of the fractal. , 1994, Physical review. B, Condensed matter.

[34]  A. Blumen,et al.  Target decay on irregular networks , 2007 .

[35]  Alexander Blumen,et al.  Spectra of Husimi cacti: exact results and applications. , 2007, The Journal of chemical physics.

[36]  A. A. Gurtovenko,et al.  Generalized Gaussian Structures: Models for Polymer Systems with ComplexTopologies , 2005 .

[37]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[38]  Angelo Perico,et al.  A reduced description of the local dynamics of star polymers , 1992 .

[39]  Chengzhen Cai,et al.  Dynamics of Starburst Dendrimers , 1999 .

[40]  T. Beu,et al.  Relaxation dynamics of a polymer network modeled by a multihierarchical structure. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Volta,et al.  Relaxation dynamics of perturbed regular hyperbranched fractals , 2010 .

[42]  J. Roovers,et al.  Dendrimers and Dendrimer-Polymer Hybrids , 1999 .

[43]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Kapral,et al.  Coupled maps on fractal lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[45]  Alexander Blumen,et al.  On the statistics of generalized Gaussian structures: collapse and random external fields , 1995 .

[46]  Alexander Blumen,et al.  Polymer dynamics and topology: extension of stars and dendrimers in external fields , 2000 .

[47]  Wu,et al.  Frequency spectrum of a general Vicsek fractal. , 1993, Physical review. B, Condensed matter.

[48]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[49]  R. Rammal,et al.  Spectrum of harmonic excitations on fractals , 1984 .

[50]  A. Blumen,et al.  Dynamics of dendrimers and of randomly built branched polymers , 2002 .

[51]  I. M. Sokolov,et al.  Small-world Rouse networks as models of cross-linked polymers , 2000, cond-mat/0004392.

[52]  R. Ferla Conformations and dynamics of dendrimers and cascade macromolecules , 1997 .

[53]  M. Galiceanu Relaxation of polymers modeled by generalized Husimi cacti , 2010 .

[54]  G. Allegra,et al.  The conformation of linear and star polymers in solution , 1991 .