Adaptive Robust Control of Biomass Fuel Co-Combustion Process

The share of biomass in energy production is constantly growing. This is caused by environmental and industry standards and EU guidelines. Biomass is used in the process of co-firing in large power plants and industrial installations. In the existing power stations, biomass is milled and burned simultaneously with coal. However, low-emission combustion techniques, including biomass co-combustion, have some negative side effects that can be split into two categories. The direct effects influence the process control stability, whereas the indirect ones on combustion installations via increased corrosion or boiler slagging. The effects can be minimised using additional information about the process. The proper combustion diagnosis as well as an appropriate, robust control system ought to be applied. The chapter is devoted to the analysis of modern, robust control techniques for complex power engineering applications.

[1]  S. Su,et al.  Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers , 2001 .

[2]  Riccardo Marino,et al.  An extended direct scheme for robust adaptive nonlinear control , 1991, Autom..

[3]  Ching-Jung Lee,et al.  The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic , 1999, IEEE Trans. Fuzzy Syst..

[4]  Amar Goléa,et al.  Fuzzy model reference adaptive control , 2002, IEEE Trans. Fuzzy Syst..

[5]  Yong Jin,et al.  Numerical simulation of pulverized coal combustion and NO formation , 2003 .

[6]  P. Kokotovic,et al.  Inverse Optimality in Robust Stabilization , 1996 .

[7]  C.-S. Chiu Robust adaptive control of uncertain MIMO non-linear systems - feedforward Takagi-Sugeno fuzzy approximation based approach , 2005 .

[8]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[9]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[10]  Masayoshi Tomizuka,et al.  Robust adaptive control using a universal approximator for SISO nonlinear systems , 2000, IEEE Trans. Fuzzy Syst..

[11]  E. Kosmatopoulos Universal stabilization using control Lyapunov functions, adaptive derivative feedback and neural network approximators , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[12]  Sebastian Engell Robust multivariable feedback control: Jan Lunze , 1991, Autom..

[13]  S. Andersson-Engels,et al.  Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system , 1991 .

[14]  Elias B. Kosmatopoulos,et al.  Robust switching adaptive control of multi-input nonlinear systems , 2002, IEEE Trans. Autom. Control..

[15]  A. Demirbas,et al.  Sustainable cofiring of biomass with coal , 2003 .

[16]  Bor-Sen Chen,et al.  Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: adaptive fuzzy approach , 2000, IEEE Trans. Fuzzy Syst..

[17]  Ying Hua,et al.  An Approach of Combustion Diagnosis in Boiler Furnace Based on Phase Space Reconstruction , 2007, ICIC.

[18]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[19]  A. Annaswamy,et al.  Adaptive control of nonlinear systems with a triangular structure , 1994, IEEE Trans. Autom. Control..

[20]  Manfred Morari,et al.  Robust Model Predictive Control , 1987, 1987 American Control Conference.

[21]  Elias B. Kosmatopoulos,et al.  A switching adaptive controller for feedback linearizable systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[22]  W.-S. Lin,et al.  Robust adaptive sliding mode control using fuzzy modelling for a class of uncertain MIMO nonlinear systems , 2002 .

[23]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[24]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[25]  Tomasz. Golec,et al.  Niskoemisyjne techniki spalania w energetyce , 2000 .

[26]  Klaus R. G. Hein,et al.  EU clean coal technology—co-combustion of coal and biomass , 1998 .

[27]  Peter Liu,et al.  Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with Hinfin motion/internal force tracking performance , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Eduardo F. Camacho,et al.  Robust Model Predictive Control , 2007 .

[29]  Shaocheng Tong,et al.  A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems , 2003, IEEE Trans. Fuzzy Syst..

[30]  Andrzej Kotyra,et al.  Assessment of the combustion of biomass and pulverized coal by combining principal component analysis and image processing techniques , 2010 .

[31]  Kevin M. Passino,et al.  Stable multi-input multi-output adaptive fuzzy/neural control , 1999, IEEE Trans. Fuzzy Syst..

[32]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[33]  John Tsinias,et al.  Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..

[34]  G. Campion,et al.  Indirect adaptive state feedback control of linearly parametrized nonlinear systems , 1990 .

[35]  Eduardo D. Sontag,et al.  Control-Lyapunov Universal Formulas for Restricted Inputs , 1995 .

[36]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[37]  Xianchang Li,et al.  Spectrometer-based combustion monitoring for flame stoichiometry and temperature control , 2005 .

[38]  Yong Yan,et al.  Impact of co-firing coal and biomass on flame characteristics and stability , 2008 .

[39]  Meng Joo Er,et al.  Adaptive intelligent control of MIMO nonlinear systems based on generalized fuzzy neural network , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[40]  Ching-Chang Wong,et al.  Implementation of the Takagi-Sugeno model-based fuzzy control using an adaptive gain controller , 2000 .

[41]  P. Kokotovic,et al.  Adaptive nonlinear design with controller-identifier separation and swapping , 1995, IEEE Trans. Autom. Control..

[42]  M. Kadjoudj,et al.  Fuzzy approximation-based model reference adaptive control of nonlinear systems , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[43]  A. Kotyra,et al.  Wykorzystanie obrazu płomienia do oceny stabilności spalania mieszanin pyłu węglowego i biomasy , 2005 .

[44]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[45]  Jan Lunze Robust Multivariable Feedback Control , 1989 .

[46]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[47]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[48]  Hao Ying,et al.  Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[49]  Yong Yan,et al.  Temperature Profiling of Pulverised Coal Flames Using Multi-Colour Pyrometric and Digital Imaging Techniques , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[50]  Jorge S. Marques,et al.  Visual inspection of a combustion process in a thermoelectric plant , 2000, Signal Process..

[51]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[52]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[53]  Meng Joo Er,et al.  Robust adaptive control of robot manipulators using generalized fuzzy neural networks , 2003, IEEE Trans. Ind. Electron..

[54]  Yong Yan,et al.  Vision based monitoring and characterisation of combustion flames , 2005 .