Comparison between SVM and ANN for Modeling the Cerebral Autoregulation Blood Flow System

The performance of SVMs and ANNs as identifiers of time systems is compared with the purpose of analyzing the Cerebral blood flow Autoregulation System, one of the main systems in the field of cerebral hemodynamics. The main variables of this system are Arterial Blood Pressure (ABP) variations and changes in End-tidal pCO2 (EtCO2). In this work we show that models that have ABP and EtCO2 as input, trained with the SVM, are superior to ANN models in terms of the fit of an unknown set, and they are also more adequate for measuring the influence of EtCO2 on Cerebral Blood Flow Velocity.