An FPTAS for optimizing a class of low-rank functions over a polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of non-linear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme does not require the assumption of quasi-concavity on the objective function. For the special case of quasi-concave function minimization, we give an alternative FPTAS, which always returns a solution which is an extreme point of the polytope. Our technique can also be used to obtain an FPTAS for combinatorial optimization problems with non-linear objective functions, for example when the objective is a product of a fixed number of linear functions. We also show that it is not possible to approximate the minimum of a general concave function over the unit hypercube to within any factor, unless P = NP. We prove this by showing a similar hardness of approximation result for supermodular function minimization, a result that may be of independent interest.

[1]  Harold P. Benson,et al.  Multiplicative Programming Problems: Analysis and Efficient Point Search Heuristic , 1997 .

[2]  Andreas S. Schulz,et al.  A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined into One , 2008, APPROX-RANDOM.

[3]  Hiroshi Konno,et al.  A cutting plane algorithm for solving bilinear programs , 1976, Math. Program..

[4]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[5]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[6]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[7]  E. Eisenberg Aggregation of Utility Functions , 1961 .

[8]  Tomomi Matsui,et al.  NP-hardness of linear multiplicative programming and related problems , 1996, J. Glob. Optim..

[9]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[10]  Alper Atamtürk,et al.  Polymatroids and mean-risk minimization in discrete optimization , 2008, Oper. Res. Lett..

[11]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[12]  Gerhard J. Woeginger,et al.  Quadratic programming and combinatorial minimum weight product problems , 2006, Math. Program..

[13]  Mihalis Yannakakis,et al.  Succinct approximate convex pareto curves , 2008, SODA '08.

[14]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[15]  S. Schaible A note on the sum of a linear and linear‐fractional function , 1977 .

[16]  Stephen A. Vavasis,et al.  Approximation algorithms for indefinite quadratic programming , 1992, Math. Program..

[17]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[18]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[19]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[20]  Hiroshi Konno,et al.  Linear multiplicative programming , 1992, Math. Program..

[21]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[22]  P. T. Thach,et al.  Optimization on Low Rank Nonconvex Structures , 1996 .

[23]  Evdokia Nikolova,et al.  Approximation Algorithms for Reliable Stochastic Combinatorial Optimization , 2010, APPROX-RANDOM.

[24]  J. Orlin,et al.  Fast Approximation Schemes for Multi-Criteria Flow, Knapsack, and Scheduling Problems , 1995 .

[25]  Hiroshi Konno,et al.  Cutting Plane/Tabu Search Algorithms for Low Rank Concave Quadratic Programming Problems , 1998, J. Glob. Optim..

[26]  Evdokia Nikolova,et al.  On the Hardness and Smoothed Complexity of Quasi-Concave Minimization , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[27]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[28]  Susan W. Palocsay,et al.  Optimizing the sum of linear fractional functions , 1992 .

[29]  Hanif D. Sherali,et al.  A new reformulation-linearization technique for bilinear programming problems , 1992, J. Glob. Optim..

[30]  R. Ravi,et al.  An FPTAS for minimizing the product of two non-negative linear cost functions , 2011, Math. Program..

[31]  Siegfried Schaible,et al.  Fractional programming: The sum-of-ratios case , 2003, Optim. Methods Softw..

[32]  H. Safer Fast approximation schemes for multi-criteria combinatorial optimization , 1992 .

[33]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[34]  Marcus Porembski,et al.  Cutting Planes for Low-Rank-Like Concave Minimization Problems , 2004, Oper. Res..

[35]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.