High performance motion detection: some trends toward new embedded architectures for vision systems

The goal of this article is to compare some optimised implementations on current high performance platforms in order to highlight architectural trends in the field of embedded architectures and to get an estimation of what should be the components of a next generation vision system. We present some implementations of robust motion detection algorithms on three architectures: a general purpose RISC processor—the PowerPC G4—a parallel artificial retina dedicated to low level image processing—Pvlsar34—and the Associative Mesh, a specialized architecture based on associative net. To handle the different aspects and constraints of embedded systems, execution time and power consumption of these architectures are compared.

[1]  Ángel Rodríguez-Vázquez,et al.  ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Alfredo Petrosino,et al.  A parallel fuzzy scale-space approach to the unsupervised texture separation , 2002, Pattern Recognit. Lett..

[3]  Thierry M. Bernard,et al.  Tree extension of micro-pipelines for mixed synchronous-asynchronous implementation of regional image computations , 2005, IS&T/SPIE Electronic Imaging.

[4]  Robert Azencott,et al.  Simulated annealing : parallelization techniques , 1992 .

[5]  W. Daniel Hillis,et al.  The CM-5 Connection Machine: a scalable supercomputer , 1993, CACM.

[6]  Antoine Manzanera,et al.  A new motion detection algorithm based on Sigma-Delta background estimation , 2007, Pattern Recognit. Lett..

[7]  Hunter Scales,et al.  AltiVec Extension to PowerPC Accelerates Media Processing , 2000, IEEE Micro.

[8]  D. Cooper,et al.  SimpleParallel Hierarchical andRelaxation Algorithms forSegmenting Noncausal MarkovianRandom Fields , 1987 .

[9]  Antoine Manzanera,et al.  Smart retina as a contour-based visual interface , 2006 .

[10]  Nathalie Drach-Temam,et al.  Memory Bandwidth: The True Bottleneck of SIMD Multimedia Performance on a Superscalar Processor , 2001, Euro-Par.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  L Frantz,et al.  A New Methodology to Optimize DMA Data Caching , .

[13]  P. Bouthemy,et al.  Recovery of moving object masks in an image sequence using local spatiotemporal contextual information , 1993 .

[14]  Thierry M. Bernard,et al.  Increasing Interconnection Network Connectivity for Reducing Operator Complexity in Asynchronous Vision Systems , 2005, DGCI.

[15]  Alain Mérigot Associative Nets: A Graph-Based Parallel Computing Net , 1997, IEEE Trans. Computers.

[16]  Patrick Garda,et al.  Motion detection, labeling, data association and tracking, in real-time on RISC computer , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[17]  A. Merigot,et al.  Associative meshes: A new parallel architecture for image analysis applications , 1993, 1993 Computer Architectures for Machine Perception.

[18]  Antoine Manzanera,et al.  A Robust and Computationally Efficient Motion Detection Algorithm Based on Sigma-Delta Background Estimation , 2004, ICVGIP.

[19]  Alberto Biancardi,et al.  Adaptive Segmentation of MR Axial Brain Images Using Connected Components , 2001, IWVF.

[20]  Robert Forchheimer,et al.  Near-sensor image processing: a new paradigm , 1994, IEEE Trans. Image Process..

[21]  Marc Renaudin,et al.  Parallel Asynchronous Watershed Algorithm-Architecture , 2007, IEEE Transactions on Parallel and Distributed Systems.

[22]  Alain Mérigot Associative nets: a graph-based parallel computing model , 1997 .

[23]  Idaku Ishii,et al.  A digital vision chip specialized for high-speed target tracking , 2003 .

[24]  D. Etiemble,et al.  Customizing CPU Instructions for Embedded Vision Systems , 2007, 2006 International Workshop on Computer Architecture for Machine Perception and Sensing.

[25]  F. Heitz,et al.  Real-time collision avoidance at road-crossings on board the Prometheus-ProLab 2 vehicle , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[26]  Piotr Dudek An asynchronous cellular logic network for trigger-wave image processing on fine-grain massively parallel arrays , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[27]  Bertrand Ducourthial,et al.  Implementing Image Analysis with a Graph-Based Parallel Computing Model , 1997, GbRPR.

[28]  Alexis Vartanian,et al.  Architecture optimization for multimedia application exploiting data and thread-level parallelism , 2005, J. Syst. Archit..

[29]  Bertrand Zavidovique,et al.  Image Analysis on Massively Parallel Computers: An Architectural Point of View , 1992, Int. J. Pattern Recognit. Artif. Intell..

[30]  Jean-Marc Chassery,et al.  Robust fast extraction of video objects combining frame differences and adaptive reference image , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[31]  J. Denoulet,et al.  System on chip evolution of a SIMD architecture for image processing , 2003, 2003 IEEE International Workshop on Computer Architectures for Machine Perception.

[33]  M. Kieffer,et al.  Efficient 16-bit Floating-Point Interval Processor for Embedded Systems and Applications , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[34]  A. Merigot,et al.  Parallel asynchronous computations for image analysis , 2002, Proc. IEEE.

[35]  Guy E. Blelloch,et al.  Vector Models for Data-Parallel Computing , 1990 .

[36]  Lionel Lacassagne,et al.  Implementing motion Markov detection on general purpose processor and associative mesh , 2005, Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05).