The tensor structure of a class of adaptive algebraic wavelet transforms
暂无分享,去创建一个
[1] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[2] W. Sweldens. The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .
[3] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[4] Christoph Schwab,et al. Wavelet approximations for first kind boundary integral equations on polygons , 1996 .
[5] Jennifer Seberry,et al. The Strong Kronecker Product , 1994, J. Comb. Theory, Ser. A.
[6] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[7] Larry L. Schumaker,et al. Wavelets, Images, and Surface Fitting , 1994 .
[8] C. Loan,et al. Approximation with Kronecker Products , 1992 .
[9] I. Daubechies,et al. Factoring wavelet transforms into lifting steps , 1998 .
[10] Eugene E. Tyrtyshnikov,et al. Algebraic Wavelet Transform via Quantics Tensor Train Decomposition , 2011, SIAM J. Sci. Comput..
[11] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[12] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[13] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[14] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[15] Christoph Schwab,et al. Wavelet Discretizations of Parabolic Integrodifferential Equations , 2003, SIAM J. Numer. Anal..
[16] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .
[17] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[18] Ivan Oseledets,et al. Approximation of matrices with logarithmic number of parameters , 2009 .
[19] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[20] F. Verstraete,et al. Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.
[21] Vladimir A. Kazeev,et al. Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..
[22] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[23] D Porras,et al. Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.
[24] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[25] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[26] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[27] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[28] Reinhold Schneider,et al. Multiwavelets for Second-Kind Integral Equations , 1997 .
[29] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[30] E. M. Wright,et al. Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.
[31] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[32] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..
[33] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[34] E. Tyrtyshnikov. Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .