Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes

Abstract We give a definition of weak n -categories based on the theory of operads. We work with operads having an arbitrary set S of types, or “ S -operads,” and given such an operad O , we denote its set of operations by elt( O ). Then for any S -operad O there is an elt( O )-operad O + whose algebras are S -operads over O . Letting I be the initial operad with a one-element set of types, and defining I 0+ = I , I ( i +1)+ =( I i + ) + , we call the operations of I ( n −1)+ the “ n -dimensional opetopes.” Opetopes form a category, and presheaves on this category are called “opetopic sets.” A weak n -category is defined as an opetopic set with certain properties, in a manner reminiscent of Street's simplicial approach to weak ω -categories. Similarly, starting from an arbitrary operad O instead of I , we define “ n -coherent O -algebras,” which are n times categorified analogs of algebras of O . Examples include “monoidal n -categories,” “stable n -categories,” “virtual n -functors” and “representable n -prestacks.” We also describe how n -coherent O -algebra objects may be defined in any ( n +1)-coherent O -algebra.

[1]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[2]  Ross Street,et al.  Coherence of tricategories , 1995 .

[3]  D. K. Harrison,et al.  Proceedings of the Conference on Categorical Algebra , 1966 .

[4]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[5]  Jim Stasheff,et al.  Homotopy associativity of $H$-spaces. II , 1963 .

[6]  Michael Johnson,et al.  The combinatorics of n-categorical pasting☆ , 1989 .

[7]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[8]  John C. Baez Higher-Dimensional Algebra II. 2-Hilbert Spaces☆ , 1996 .

[9]  John C. Baez,et al.  Higher Dimensional Algebra: I. Braided Monoidal 2-Categories , 1995, q-alg/9511013.

[10]  Zouhair Tamsamani,et al.  Sur des notions de n-catégorie et n-groupoi͏̈de non strictes via des ensembles multi-simpliciaux , 1996 .

[11]  Mihaly Makkai,et al.  Avoiding the axiom of choice in general category theory , 1996 .

[12]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[13]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[14]  G. Rota,et al.  Finite operator calculus , 1975 .

[15]  A. Power,et al.  A 2-categorical pasting theorem , 1990 .

[16]  J. Adams,et al.  Infinite Loop Spaces , 1978 .

[17]  Joan Mas,et al.  A Letter to R , 1967 .

[18]  Ioan Mackenzie James,et al.  Handbook of algebraic topology , 1995 .

[19]  Vladimir Voevodsky,et al.  2-Categories and Zamolodchikov tetrahedra equations , 1994 .

[20]  S. Maclane,et al.  General theory of natural equivalences , 1945 .

[21]  J. Benabou Introduction to bicategories , 1967 .

[22]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[23]  M. Kapranov,et al.  Koszul duality for Operads , 1994, 0709.1228.

[24]  Ronald Brown From Groups to Groupoids: a Brief Survey , 1987 .