Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems
暂无分享,去创建一个
[1] R. Reemtsen,et al. The Direct Solution of Nonconvex Nonlinear FIR Filter Design Problems by a SIP Method , 2000 .
[2] Jane J. Ye,et al. Solving semi-infinite programs by smoothing projected gradient method , 2014, Comput. Optim. Appl..
[3] Kok Lay Teo,et al. A Truncated Projected Newton-Type Algorithm for Large-Scale Semi-infinite Programming , 2006, SIAM J. Optim..
[4] Paul I. Barton,et al. Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..
[5] Dong-Hui Li,et al. An iterative method for solving KKT system of the semi-infinite programming , 2005, Optim. Methods Softw..
[6] Kenneth O. Kortanek,et al. Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..
[7] Oliver Stein,et al. The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..
[8] Marco A. López,et al. A New Exchange Method for Convex Semi-Infinite Programming , 2010, SIAM J. Optim..
[9] Kenneth O. Kortanek,et al. A Central Cutting Plane Algorithm for Convex Semi-Infinite Programming Problems , 1993, SIAM J. Optim..
[10] Georg Still,et al. Discretization in semi-infinite programming: the rate of convergence , 2001, Math. Program..
[11] C. Adjiman,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .
[12] Aurelio Piazzi,et al. A hybrid algorithm for infinitely constrained optimization , 2001, Int. J. Syst. Sci..
[13] Kok Lay Teo,et al. Computational Discretization Algorithms for Functional Inequality Constrained Optimization , 2000, Ann. Oper. Res..
[14] Masao Fukushima,et al. A globally convergent SQP method for semi-infinite nonlinear optimization , 1988 .
[15] Bruno Betrò,et al. An accelerated central cutting plane algorithm for linear semi-infinite programming , 2004, Math. Program..
[16] Marco A. López,et al. Semi-infinite programming , 2007, Eur. J. Oper. Res..
[17] Alexander Potchinkov,et al. THE SIMULTANEOUS APPROXIMATION OF MAGNITUDE AND PHASE BY FIR DIGITAL FILTERS. II: METHODS AND EXAMPLES , 1997 .
[18] C. C. Gonzaga,et al. An improved algorithm for optimization problems with functional inequality constraints , 1980 .
[19] Ekkehard W. Sachs,et al. Local Convergence of SQP Methods in Semi-Infinite Programming , 1995, SIAM J. Optim..
[20] Paul I. Barton,et al. Global solution of semi-infinite programs , 2004 .
[21] Kok Lay Teo,et al. A computational algorithm for functional inequality constrained optimization problems , 1990, Autom..
[22] A. Neumaier,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .
[23] Christodoulos A. Floudas,et al. Deterministic Global Optimization: Theory, Methods and (NONCONVEX OPTIMIZATION AND ITS APPLICATIONS Volume 37) (Nonconvex Optimization and Its Applications) , 2005 .
[24] Christodoulos A. Floudas,et al. Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.
[25] Alexander Potchinkov,et al. The Simultaneous Approximation of Magnitude and Phase by FIR Digital Filters. I: A New Approach , 1997, Int. J. Circuit Theory Appl..
[26] C. J. Price,et al. Numerical experiments in semi-infinite programming , 1996, Comput. Optim. Appl..
[27] Alexander Potchinkov,et al. FIR filter design in the complex domain by a semi-infinite programming technique. I: The method , 1994 .
[28] Elijah Polak,et al. Optimization: Algorithms and Consistent Approximations , 1997 .
[29] A. Shapiro. Semi-infinite programming, duality, discretization and optimality conditions , 2009 .
[30] Chen Ling,et al. A smoothing projected Newton-type algorithm for semi-infinite programming , 2009, Comput. Optim. Appl..
[31] Rembert Reemtsen,et al. Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .