A survey on vertex coloring problems

This paper surveys the most important algorithmic and computational results on the Vertex Coloring Problem (VCP) and its generalizations. The first part of the paper introduces the classical models for the VCP, and discusses how these models can be used and possibly strengthened to derive exact and heuristic algorithms for the problem. Computational results on the best performing algorithms proposed in the literature are reported. The second part of the paper is devoted to some generalizations of the problem, which are obtained by considering additional constraints [Bandwidth (Multi) Coloring Problem, Bounded Vertex Coloring Problem] or an objective function with a special structure (Weighted Vertex Coloring Problem). The extension of the models for the classical VCP to the considered problems and the best performing algorithms from the literature, as well as the corresponding computational results, are reported.

[1]  Paolo Toth,et al.  A Metaheuristic Approach for the Vertex Coloring Problem , 2008, INFORMS J. Comput..

[2]  Jin-Kao Hao,et al.  Tabu Search for Graph Coloring, T-Colorings and Set T-Colorings , 1999 .

[3]  Steven Prestwich,et al.  Constrained Bandwidth Multicoloration Neighbourhoods , 2022 .

[4]  Steven Skiena,et al.  Coloring Graphs With a General Heuristic Search Engine , 2002 .

[5]  Carlo Mannino,et al.  Models and solution techniques for frequency assignment problems , 2003, 4OR.

[6]  Isabel Méndez-Díaz,et al.  A cutting plane algorithm for graph coloring , 2008, Discret. Appl. Math..

[7]  Victor A. Campos,et al.  On the asymmetric representatives formulation for the vertex coloring problem , 2005, Discret. Appl. Math..

[8]  Paolo Toth,et al.  Models and heuristic algorithms for a weighted vertex coloring problem , 2009, J. Heuristics.

[9]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[10]  Teruo Higashino,et al.  A Minimal-State Processing Search Algorithm for Graph Coloring Problems , 2000 .

[11]  Klaus Jansen,et al.  An Approximation Scheme for Bin Packing with Conflicts , 1998, J. Comb. Optim..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Yuri Frota,et al.  Cliques, holes and the vertex coloring polytope , 2004, Inf. Process. Lett..

[14]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[15]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[16]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[17]  Carlo Mannino,et al.  Models and solution techniques for frequency assignment problems , 2003, 4OR.

[18]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[19]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[20]  Anuj Mehrotra Constrained graph partitioning: decomposition, polyhedral structure and algorithms , 1992 .

[21]  Alain Hertz,et al.  Variable space search for graph coloring , 2006, Discret. Appl. Math..

[22]  John L. Hennessy,et al.  The priority-based coloring approach to register allocation , 1990, TOPL.

[23]  Gerd Finke,et al.  Graph Partitioning and Set Covering for the Optimal Design of a Production System in the Metal Industry , 2000 .

[24]  Nicolas Zufferey,et al.  A graph coloring heuristic using partial solutions and a reactive tabu scheme , 2008, Comput. Oper. Res..

[25]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[26]  Gilbert Laporte,et al.  Examination timetabling by computer , 1982, Comput. Oper. Res..

[27]  C.J.H. Mann,et al.  Handbook of Approximation: Algorithms and Metaheuristics , 2008 .

[28]  C. Ribeiro,et al.  An optimal column-generation-with-ranking algorithm for very large scale set partitioning problems in traffic assignment , 1989 .

[29]  Gerd Finke,et al.  Batch processing with interval graph compatibilities between tasks , 2005, Discret. Appl. Math..

[30]  Tai-Kuo Woo,et al.  Resource allocation in a dynamically partitionable bus network using a graph coloring algorithm , 1991, IEEE Trans. Commun..

[31]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[32]  Paolo Toth,et al.  An evolutionary approach for bandwidth multicoloring problems , 2008, Eur. J. Oper. Res..

[33]  Paolo Toth,et al.  Algorithms for the Bin Packing Problem with Conflicts , 2010, INFORMS J. Comput..

[34]  Alain Hertz,et al.  Efficient algorithms for finding critical subgraphs , 2004, Discret. Appl. Math..

[35]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[36]  Michel Gendreau,et al.  Heuristics and lower bounds for the bin packing problem with conflicts , 2004, Comput. Oper. Res..

[37]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[38]  Pierre Hansen,et al.  Bounded vertex colorings of graphs , 1990, Discret. Math..

[39]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[40]  Craig A. Morgenstern Distributed coloration neighborhood search , 1993, Cliques, Coloring, and Satisfiability.

[41]  Jack J. Dongarra,et al.  Performance of various computers using standard linear equations software in a FORTRAN environment , 1988, CARN.

[42]  Nicolas Zufferey,et al.  A Reactive Tabu Search Using Partial Solutions for the Graph Coloring Problem , 2004 .

[43]  J. R. Brown Chromatic Scheduling and the Chromatic Number Problem , 1972 .

[44]  Vangelis Th. Paschos,et al.  Weighted Coloring: Further Complexity and Approximability Results , 2005, ICTCS.

[45]  Alain Hertz,et al.  An adaptive memory algorithm for the k-coloring problem , 2003, Discret. Appl. Math..

[46]  Daniel Br New Methods to Color the Vertices of a Graph , 1979 .

[47]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[48]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[49]  Pierre Hansen,et al.  Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results , 2005, Discret. Optim..

[50]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[51]  Klaus Jansen,et al.  Approximation Algorithms for Time Constrained Scheduling , 1997, Inf. Comput..

[52]  Frank Thomson Leighton,et al.  A Graph Coloring Algorithm for Large Scheduling Problems. , 1979, Journal of research of the National Bureau of Standards.

[53]  Klaus Jansen,et al.  On the Complexity of Scheduling Incompatible Jobs with Unit-Times , 1993, MFCS.

[54]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for the Graph Colouring Problem Stochastic Local Search Algorithms for the Graph Colouring Problem , 2005 .

[55]  A. Gamst,et al.  Some lower bounds for a class of frequency assignment problems , 1986, IEEE Transactions on Vehicular Technology.

[56]  David Joslin,et al.  "Squeaky Wheel" Optimization , 1998, AAAI/IAAI.

[57]  Celso C. Ribeiro,et al.  Reactive GRASP: An Application to a Matrix Decomposition Problem in TDMA Traffic Assignment , 2000, INFORMS J. Comput..

[58]  Steven David Prestwich,et al.  Generalised graph colouring by a hybrid of local search and constraint programming , 2008, Discret. Appl. Math..

[59]  Edward C. Sewell,et al.  An improved algorithm for exact graph coloring , 1993, Cliques, Coloring, and Satisfiability.

[60]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .

[61]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[62]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[63]  D. de Werra,et al.  Time slot scheduling of compatible jobs , 2007, J. Sched..

[64]  Yi Zhu,et al.  A Hybrid Method for the Graph Coloring and Related Problems , 2003 .

[65]  Yi Zhu,et al.  Heuristic methods for graph coloring problems , 2005, SAC '05.