Convexities related to path properties on graphs
暂无分享,去创建一个
[1] Robert E. Jamison-Waldner. PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .
[2] H. M. Mulder. The interval function of a graph , 1980 .
[3] G. Sierksma. CARATHEODORY AND HELLY-NUMBERS OF CONVEX-PRODUCT-STRUCTURES , 1975 .
[4] Gary Chartrand,et al. Convex sets in graphs , 1999 .
[5] Henry Martyn Mulder,et al. The induced path convexity, betweenness, and svelte graphs , 2002, Discret. Math..
[6] Ladislav Nebeský. A characterization of the set of all shortest paths in a connected graph , 1994 .
[7] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[8] M. Farber,et al. Convexity in graphs and hypergraphs , 1986 .
[9] Ladislav Nebeský. Characterizing the interval function of a connected graph , 1998 .
[10] Ladislav Nebeský,et al. A characterization of the interval function of a connected graph , 1994 .
[11] P. Duchet,et al. Discrete convexity : retractions , morphisms and the partition problem , 1998 .
[12] Van de M. L. J. Vel. Theory of convex structures , 1993 .
[13] Pierre Duchet. Convexity in combinatorial structures , 1987 .
[14] J. Calder. Some Elementary Properties of Interval Convexities , 1971 .
[15] Pierre Duchet,et al. Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.
[16] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[17] Manoj Changat,et al. On triangle path convexity in graphs , 1999, Discret. Math..
[18] Sandi Klavzar,et al. The All-Paths Transit Function of a Graph , 2001 .