On Solving Boolean Multilevel Optimization Problems

Many combinatorial optimization problems entail a number of hierarchically dependent optimization problems. An often used solution is to associate a suitably large cost with each individual optimization problem, such that the solution of the resulting aggregated optimization problem solves the original set of optimization problems. This paper starts by studying the package upgradeability problem in software distributions. Straightforward solutions based on Maximum Satisfiability (MaxSAT) and pseudo-Boolean (PB) optimization are shown to be ineffective, and unlikely to scale for large problem instances. Afterwards, the package upgradeability problem is related to multilevel optimization. The paper then develops new algorithms for Boolean Multilevel Optimization (BMO) and highlights a number of potential applications. The experimental results indicate that algorithms for BMO allow solving optimization problems that existing MaxSAT and PB solvers would otherwise be unable to solve.

[1]  Vasco M. Manquinho,et al.  Satisfiability-Based Algorithms for Boolean Optimization , 2004, Annals of Mathematics and Artificial Intelligence.

[2]  Kaile Su,et al.  Within-problem Learning for Efficient Lower Bound Computation in Max-SAT Solving , 2008, AAAI.

[3]  Terry L. Friesz,et al.  Hierarchical optimization: An introduction , 1992, Ann. Oper. Res..

[4]  Sorin Lerner,et al.  OPIUM: Optimal Package Install/Uninstall Manager , 2007, 29th International Conference on Software Engineering (ICSE'07).

[5]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[6]  Claudette Cayrol,et al.  Comparing arguments using preference orderings for argument-based reasoning , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[7]  Martin Lukasiewycz,et al.  Solving Multi-objective Pseudo-Boolean Problems , 2007, SAT.

[8]  Enrico Giunchiglia,et al.  Planning as Satisfiability with Preferences , 2007, AAAI.

[9]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[10]  Albert Oliveras,et al.  MiniMaxSAT: An Efficient Weighted Max-SAT solver , 2008, J. Artif. Intell. Res..

[11]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[12]  Josep Argelich,et al.  CNF Instances from the Software Package Installation Problem , 2008, RCRA.

[13]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[14]  Roberto Di Cosmo,et al.  Managing the Complexity of Large Free and Open Source Package-Based Software Distributions , 2006, 21st IEEE/ACM International Conference on Automated Software Engineering (ASE'06).

[15]  W. Norton R. Candler,et al.  Multi-level programming , 1977 .

[16]  Nic Wilson,et al.  Lexicographically-ordered constraint satisfaction problems , 2009, Constraints.

[17]  Toby Walsh,et al.  Preferences in Constraint Satisfaction and Optimization , 2008, AI Mag..

[18]  Patrice Marcotte,et al.  A bilevel programming approach to the travelling salesman problem , 2004, Oper. Res. Lett..

[19]  Eugene C. Freuder,et al.  Ordinal Constraint Satisfaction , 1992 .

[20]  Ulrich Junker,et al.  Preference-Based Search and Multi-Criteria Optimization , 2002, Ann. Oper. Res..

[21]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[22]  Igor L. Markov,et al.  PBS: A Backtrack-Search Pseudo-Boolean Solver and Optimizer , 2000 .

[23]  Andrew W. Metcalfe Meeting , 1987 .

[24]  Igor L. Markov,et al.  Generic ILP versus specialized 0-1 ILP: an update , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[25]  Thomas Schiex,et al.  Soft Constraints , 2000, WLP.

[26]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..