Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method

Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes’ conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.

[1]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[2]  Steve W. Martin,et al.  Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles , 2006 .

[3]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[4]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[5]  S. Adams,et al.  Antifluorite-type lithium chromium oxide nitrides: synthesis, structure, order, and electrochemical properties. , 2004, Inorganic chemistry.

[6]  Adams,et al.  Determining ionic conductivity from structural models of fast ionic conductors , 2000, Physical review letters.

[7]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[8]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[9]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[10]  Yukio Morii,et al.  Crystal Structure and Diffusion Path in the Fast Lithium-Ion Conductor La0.62Li0.16TiO3 , 2005 .

[11]  Hui Cao,et al.  LiAlO-coated LiCoO as cathode material for lithium ion batteries , 2005 .

[12]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[13]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[14]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[15]  K. Y. Cheung,et al.  IONIC CONDUCTIVITY OF LI14ZN(GEO4)4 (LISICON) , 1979 .

[16]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[17]  Yusheng Zhao,et al.  Experimental visualization of lithium conduction pathways in garnet-type , 2012 .

[18]  P. Bruce,et al.  The mechanism of lithium ion mobility in solid electrolytes , 1991 .

[19]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[20]  Venkataraman Thangadurai,et al.  Recent progress in solid oxide and lithium ion conducting electrolytes research , 2006 .

[21]  T. Katsumata,et al.  Synthesis and lithium ion conductivity of cubic deficient perovskites Sr0.5+xLi0.5−2x□xTi0.5Ta0.5O3 and the La-doped compounds , 2004 .

[22]  Liquan Chen,et al.  Al2O3-coated LiCoO2 as cathode material for lithium ion batteries , 2002 .

[23]  P. Heitjans,et al.  Li Ion Dynamics in a LiAlO2 Single Crystal Studied by 7Li NMR Spectroscopy and Conductivity Measurements , 2012 .

[24]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[25]  V. Blatov,et al.  Mechanism of structural phase transitions in the Li4GeO4-ZnGeO4 system: Computer modeling and identification of invariant nanocluster structures in Li4GeO4, LISICON Li6Zn(GeO4)2, and Li4Zn2(GeO4)2 (γ phase) , 2012, Russian Journal of Inorganic Chemistry.

[26]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[27]  R. P. Rao,et al.  Lithium ion transport pathways in xLiCl―(1―x)(0.6Li2O-0.4P2O5) glasses , 2009 .

[28]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[29]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[30]  O. Bohnké,et al.  Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x□1/3-2x)TiO3 , 2003 .

[31]  Stefan Adams,et al.  Structural requirements for fast lithium ion migration in Li10GeP2S12 , 2012 .

[32]  Ping Chen,et al.  Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N , 2010 .

[33]  S. Adams,et al.  Structure property correlation in lithium borophosphate glasses , 2012, The European Physical Journal E.

[34]  Stefan Adams,et al.  Modelling ion conduction pathways by bond valence pseudopotential maps , 2000 .

[35]  Stefan Adams,et al.  Bond valence analysis of structure-property relationships in solid electrolytes , 2006 .

[36]  I. Brown VALENCE: a program for calculating bond valences , 1996 .

[37]  B. Pecquenard,et al.  Influence of sputtering conditions on ionic conductivity of LiPON thin films , 2006 .

[38]  S. Adams,et al.  Ag migration pathways in crystalline and glassy solid electrolytes AgI-AgMxOy , 1998 .

[39]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[40]  L. Curtiss,et al.  Li Ion Diffusion Mechanisms in Bulk Monoclinic Li2CO3 Crystals from Density Functional Studies , 2010 .

[41]  Youyuan Huang,et al.  Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2 , 2013 .

[42]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[43]  B. S. Kwak,et al.  Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure , 1995 .

[44]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[45]  I. D. Brown Using chemical bonds to analyze data retrieved from the inorganic crystal structure database , 1989, J. Chem. Inf. Comput. Sci..

[46]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[47]  Eckhard Karden,et al.  Energy storage devices for future hybrid electric vehicles , 2007 .

[48]  R. P. Rao,et al.  Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. , 2009, Physical chemistry chemical physics : PCCP.

[49]  Z. Wen,et al.  Research on the preparation, electrical and mechanical properties of γ-LiAlO2 ceramics , 2004 .

[50]  K. Satō,et al.  Particle-like and fluid-like settling of a stratified suspension , 2012, The European physical journal. E, Soft matter.

[51]  S. Adams,et al.  Mixed mobile ion effect and cooperative motions in silver-sodium phosphate glasses. , 2008, Physical review letters.

[52]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[53]  Yue Qi,et al.  Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries , 2013 .

[54]  O. Bohnké,et al.  Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes , 1997 .

[55]  Diffusion and ionic conduction in nanocrystalline ceramics , 2003 .

[56]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[57]  S. Adams,et al.  Local dimensionality and intermediate range ordering of ion conduction pathways in borate glasses , 2006 .

[58]  S. Adams Relationship between bond valence and bond softness of alkali halides and chalcogenides. , 2001, Acta crystallographica. Section B, Structural science.

[59]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[60]  Weishan Li,et al.  Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate) , 2009 .

[61]  Liquan Chen,et al.  Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .

[62]  K. Y. Cheung,et al.  Ionic conductivity of Li14Zn(GeO44 (Lisicon) , 1978 .

[63]  I. D. Brown,et al.  INORGANIC CRYSTAL STRUCTURE DATABASE , 1981 .

[64]  S. Adams,et al.  Pathway models for fast ion conductors by combination of bond valence and reverse Monte Carlo methods , 2002 .

[65]  S. Adams,et al.  Comparative study of ion conducting pathways in borate glasses , 2006 .

[66]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[67]  John Faber,et al.  Rietveld Refinement & Indexing Workshop ICDD Headquarters ❖ Newtown Square ❖ PA 30 September-4 October 2013 Sponsored by the International Centre for Diffraction Data , 2013 .

[68]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[69]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .