Depth Map Calculation for a Variable Number of Moving Objects using Markov Sequential Object Processes

We advocate the use of Markov sequential object processes for tracking a variable number of moving objects through video frames with a view towards depth calculation. A regression model based on a sequential object process quantifies goodness of fit; regularization terms are incorporated to control within and between frame object interactions. We construct a Markov chain Monte Carlo method for finding the optimal tracks and associated depths and illustrate the approach on a synthetic data set as well as a sports sequence.

[1]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[2]  Merrilee Hurn,et al.  Bayesian object identification , 1999 .

[3]  M. N. M. van Lieshout,et al.  Markovianity in space and time , 2006, math/0608242.

[4]  Jens B. Lund,et al.  Bayesian analysis of spatial point patterns from noisy observations , 1999 .

[5]  B. Ripley,et al.  Markov Point Processes , 1977 .

[6]  Kanti V. Mardia,et al.  Deformable Template Recognition of Multiple Occluded Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Josiane Zerubia,et al.  A Gibbs Point Process for Road Extraction from Remotely Sensed Images , 2004, International Journal of Computer Vision.

[8]  Josiane Zerubia,et al.  Point processes for unsupervised line network extraction in remote sensing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  G. Matheron Random Sets and Integral Geometry , 1976 .

[10]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[11]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[12]  M. N. M. van Lieshout,et al.  Object recognition using Markov spatial processes , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[13]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[14]  R. L. Eubank,et al.  A Kalman filter primer , 2005 .

[15]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[16]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  B. Ripley,et al.  Using spatial models as priors in astronomical image analysis , 1989 .

[18]  van Marie-Colette Lieshout,et al.  Campbell and moment measures for finite sequential spatial processes , 2006 .

[19]  A. L. Sutherland,et al.  Finding spiral structures in images of galaxies , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[20]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[21]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[22]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .