Functional approaches in resampling plans: A review of some recent developments

SUMMARY. The jackknife. bootstrap and some other resampling plans are commonly used to estimate (and reduce) the bias and sampling error of statistical estimators. In these contexts. general (differentiable) statistical functionals crop up in a variety of models (especially. in nonparametric setups). A treatise of statistical functionals in resampling plans is considered along with a review of some of these recent developments.

[1]  M. H. Quenouille NOTES ON BIAS IN ESTIMATION , 1956 .

[2]  W. Parr Jackknifing Differentiable Statistical Functionals , 1985 .

[3]  Joseph P. Romano A Bootstrap Revival of Some Nonparametric Distance Tests , 1988 .

[4]  BOOTSTRAP CONFIDENCE INTERVALS FOR CONDITIONAL QUANTILE FUNCTIONS , 1988 .

[5]  Pranab Kumar Sen Functional jackknifing: Rationality and general asymptotics , 1988 .

[6]  K. Athreya BOOTSTRAP OF THE MEAN IN THE INFINITE VARIANCE CASE , 1987 .

[7]  Jun Shao,et al.  Heteroscedasticity-Robustness of Jackknife Variance Estimators in Linear Models , 1987 .

[8]  G. Gregory,et al.  Large Sample Theory for $U$-Statistics and Tests of Fit , 1977 .

[9]  P. Sen Whither jackknifing in Stein-rule estimation? , 1986 .

[10]  Louis A. Jaeckel Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals , 1972 .

[11]  P. Sen,et al.  A Second-Order Asymptotic Distributional Representation of $M$-Estimators with Discontinuous Score Functions , 1987 .

[12]  K. Singh,et al.  On the Asymptotic Accuracy of Efron's Bootstrap , 1981 .

[13]  W. Parr A note on the jackknife, the bootstrap and the delta method estimators of bias and variance , 1983 .

[14]  J. Shao On Resampling Methods for Variance and Bias Estimation in Linear Models , 1988 .

[15]  Rupert G. Miller An Unbalanced Jackknife , 1974 .

[16]  Eric R. Ziegel,et al.  New Perspectives in Theoretical and Applied Statistics , 1988 .

[17]  P. K. Bhattacharya,et al.  Kernel and Nearest-Neighbor Estimation of a Conditional Quantile , 1990 .

[18]  P. Sen Some Invariance Principles Relating to Jackknifing and Their Role in Sequential Analysis , 1977 .

[19]  R. R. Bahadur A Note on Quantiles in Large Samples , 1966 .

[20]  L. Fernholz von Mises Calculus For Statistical Functionals , 1983 .

[21]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[22]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[23]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[24]  R. V. Mises On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .

[25]  G. Babu A note on bootstrapping the variance of sample quantile , 1986 .

[26]  P. Sen On the Limiting Behaviour of the Empirical Kernel Distribution Function , 1983 .

[27]  B. R. Clarke Nonsmooth analysis and Fréchet differentiability of M-functionals , 1986 .

[28]  J. Ghosh A New Proof of the Bahadur Representation of Quantiles and an Application , 1971 .

[29]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[30]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[31]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[32]  G. J. Babu,et al.  A Note on Bootstrapping the Sample Median , 1984 .

[33]  Michael A. Martin On the bootstrap and confidence intervals , 1989 .

[34]  R. Beran Estimated Sampling Distributions: The Bootstrap and Competitors , 1982 .

[35]  P. Sen Jackknife L-estimators: Affine structure and asymptotics , 1982 .