Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model

[1]  M. Wohlfahrt‐Mehrens,et al.  Li plating as unwanted side reaction in commercial Li-ion cells - A review , 2018 .

[2]  Xuning Feng,et al.  Analysis on the Fault Features for Internal Short Circuit Detection Using an Electrochemical-Thermal Coupled Model , 2018 .

[3]  H. Gasteiger,et al.  Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries , 2017 .

[4]  Dirk Uwe Sauer,et al.  Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis , 2017 .

[5]  Richard Barney Carlson,et al.  Enabling fast charging – A battery technology gap assessment , 2017 .

[6]  Jianqiu Li,et al.  Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model , 2017 .

[7]  Jianqiu Li,et al.  An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery , 2017 .

[8]  Chaoyang Wang,et al.  Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging , 2017 .

[9]  M. Wohlfahrt‐Mehrens,et al.  Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells , 2017 .

[10]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction , 2017 .

[11]  M. Winter,et al.  Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries , 2017 .

[12]  Martin Winter,et al.  Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis , 2016 .

[13]  Marius Bauer,et al.  Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells , 2016 .

[14]  Xuning Feng,et al.  Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles , 2015 .

[15]  Jianqiu Li,et al.  Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 composite cathode , 2015 .

[16]  Jianqiu Li,et al.  Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation , 2015 .

[17]  Jianqiu Li,et al.  Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model , 2015 .

[18]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction , 2014 .

[19]  Kazuma Gotoh,et al.  In situ7Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries , 2014 .

[20]  Michael A. Danzer,et al.  Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries , 2014 .

[21]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[22]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[23]  Zhe Li,et al.  A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification , 2014 .

[24]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[25]  Gregory L. Plett,et al.  Controls oriented reduced order modeling of lithium deposition on overcharge , 2012 .

[26]  Kandler Smith,et al.  Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries , 2011 .

[27]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[28]  Marshall C. Smart,et al.  Lithium Plating Behavior in Lithium-Ion Cells , 2010 .

[29]  M. Safari,et al.  Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries , 2009 .

[30]  John Newman,et al.  Two-Dimensional Modeling of Lithium Deposition during Cell Charging , 2008 .

[31]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[32]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[33]  I. Bloom,et al.  Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application , 2005 .

[34]  Marc Doyle,et al.  Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium‐Ion Batteries Using Carbon‐Based Negative Electrodes , 1999 .

[35]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[36]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[37]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[38]  Xuning Feng,et al.  Thermal runaway mechanism of lithium ion battery for electric vehicles: A review , 2018 .

[39]  D. Abraham,et al.  Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi0.5Co0.2Mn0.3O2 Cathode , 2017 .

[40]  Zhe Li,et al.  Investigating Lithium Plating in Lithium-Ion Batteries at Low Temperatures Using Electrochemical Model with NMR Assisted Parameterization , 2017 .

[41]  J. Arai,et al.  Study of Li Metal Deposition in Lithium Ion Battery during Low-Temperature Cycle Using In Situ Solid-State7Li Nuclear Magnetic Resonance , 2017 .

[42]  M. Wohlfahrt‐Mehrens,et al.  Electrochemical, Post-Mortem, and ARC Analysis of Li-Ion Cell Safety in Second-Life Applications , 2017 .

[43]  Thomas Waldmann,et al.  Interplay of Operational Parameters on Lithium Deposition in Lithium-Ion Cells: Systematic Measurements with Reconstructed 3-Electrode Pouch Full Cells , 2016 .

[44]  Kazuma Gotoh,et al.  In Situ Solid State 7Li NMR Observations of Lithium Metal Deposition during Overcharge in Lithium Ion Batteries , 2015 .

[45]  S. Raël,et al.  Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling , 2014 .

[46]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .