Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes.

A visual and thermal experimental investigation of four oscillating heat pipes (OHPs) was conducted to observe fluid flow of liquid plugs and vapor bubbles in the OHP and its effect on the temperature distribution and heat transfer performance in an OHP. These four OHPs consist of an open loop water OHP, an open loop acetone OHP, a closed loop water OHP, and a closed loop acetone OHP. These copper OHPs were constructed identically with all six turns in the same plane. They were constructed out of 1.65 mm inner diameter copper tubing and copper heat spreading plates in the evaporator and condenser regions. The heat pipes were charged at a filling ratio of about 50%. The results show that the acetone OHP at low power performs better than the water OHP, while at high power the water OHP exceeds the acetone OHP. The experimental results show that both the acetone and water closed loop OHPs had reduced movement in the connecting turn between the two sides. However, in the water closed loop OHP, this prevented circulation altogether. Comparing the water closed loop OHP to the water open loop OHP, their flow patterns were similar. Therefore, improving the fiow in this turn should increase the closed loop OHP's performance.