Nested Sequents for Intuitionistic Modal Logics

We present cut-free deductive systems without labels for the intuitionistic variants of the modal logics obtained by extending K with a subset of the axioms d, t, b, 4, and 5. For this, we use the formalism of nested sequents. We show a uniform cut elimination argument and a terminating proof search procedure. As a corollary we get the decidability of all modal logics in the intuitionistic S5-cube. For most of the logics this has already been shown by other means, but for some cases, like intuitionistic S4, this solves an open problem.

[1]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[2]  Natasha Alechina,et al.  Categorical and Kripke Semantics for Constructive S4 Modal Logic , 2001, CSL.

[3]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[4]  Lutz Straßburger,et al.  Modular Sequent Systems for Modal Logic , 2009, TABLEAUX.

[5]  Brigitte Pientka,et al.  Bidirectional Decision Procedures for the Intuitionistic Propositional Modal Logic IS4 , 2007, CADE.

[6]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[7]  Michael Mendler,et al.  Cut-free Gentzen calculus for multimodal CK , 2011, Inf. Comput..

[8]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[9]  Kai Brunnler,et al.  Nested Sequents , 2010, ArXiv.

[10]  F. Lamarche On the Algebra of Structural Contexts , 2003 .

[11]  Frank Pfenning,et al.  A judgmental reconstruction of modal logic , 2001, Mathematical Structures in Computer Science.

[12]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[13]  Francesca Poggiolesi,et al.  The Method of Tree-Hypersequents for Modal Propositional Logic , 2009, Towards Mathematical Philosophy.

[14]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[15]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[16]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[17]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..