Technique, analysis routines, and application of direct push-driven in situ color logging

Color data are a useful proxy for soil/sediment parameterization since they reflect material characteristics. We introduce direct push color logging for real-time and depth-resolved, in situ colorimetric record of colors in unconsolidated sediments in terrestrial environments. Until now, no routines exist on how to handle highly resolved (mm-scale) data. To develop such routine, we transform colorimetric data (CIEXYZ) into color surrogates of selected color spaces (CIExyZ, \({\text{CIE}}L^{*} a^{*} b^{*}\), \({\text{CIE}}L^{*} c^{*} h^{*}\), sRGB). We obtain interpretable color logs over depth by filtering with Haar and Daublet4 wavelet functions. We verify the approach, according to repeatability of in situ sediment color measurements, with related lithological determination gathered by state-of-the-art direct push-based cone penetration testing and soil sampling data. The developed routine is appropriate for unambiguous transformation of color data into interpretable color surrogates and filtering small-scale variability. We observe that soil color logs are repeatable and proved to correlate with lithological/chemical changes. Thus, the technique allows enhanced profiling by means of providing a reproducible high-resolution parameter for analysis of soil/sediment characteristics. This opens potential new areas of application and new outputs for in situ-obtained colorimetric data in and beyond geotechnical site characterization.

[1]  David B. Kemp,et al.  Colorimetric characterisation of flatbed scanners for rock/sediment imaging , 2014, Comput. Geosci..

[2]  B. Duval Commission internationale de l’éclairage (CIE) , 2001, Optique Photonique.

[3]  Hai-Sui Yu,et al.  In-Situ Soil Testing , 2000 .

[4]  L. Lavkulich,et al.  Use of sample color to estimate oxidized Fe content in mine waste rock , 1999 .

[5]  B. Minasny,et al.  Towards digital soil morphometrics , 2014 .

[6]  J. Leprun,et al.  Relations between soil colour and waterlogging duration in a representative hillside of the West African granito-gneissic bedrock , 2000 .

[7]  J. López‐Sáez,et al.  Holocene environmental change in Eastern Spain reconstructed through the multiproxy study of a pedo-sedimentary sequence from Les Alcusses (Valencia, Spain) , 2014 .

[8]  S. Mallat A wavelet tour of signal processing , 1998 .

[9]  C. Burras,et al.  Organic Carbon, Texture, and Quantitative Color Measurement Relationships for Cultivated Soils in North Central Iowa , 2003 .

[10]  Pierre Breul,et al.  In Field Soil Characterization: Approach Based on Texture Image Analysis , 2006 .

[11]  Roman D. Hryciw,et al.  VISION CONE PENETROMETER FOR DIRECT SUBSURFACE SOIL OBSERVATION. TECHNICAL NOTE , 1997 .

[12]  R. V. Rossel,et al.  Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties , 2006 .

[13]  A. Robertson,et al.  Colorimetry: Fundamentals and Applications , 2005 .

[14]  José Torrent,et al.  Laboratory Measurement of Soil Color: Theory and Practice , 2015 .

[15]  Linda R. Barrett Spectrophotometric color measurement in situ in well drained sandy soils , 2002 .

[16]  Roman D. Hryciw,et al.  Hydraulic Conductivity Measurement from On-the-Fly uCPT Sounding and from VisCPT , 2008 .

[17]  D. Goodman,et al.  The Measurement and Analysis of Depth in Archaeological Geophysics: Tests at the Biesterfeldt Site, USA , 2011 .

[18]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[19]  Peter K. Robertson,et al.  Cone-penetration testing in geotechnical practice , 1997 .

[20]  Peter Dietrich,et al.  Direct Push-Technologies , 2006 .

[21]  U. Schwertmann,et al.  QUANTITATIVE RELATIONSHIPS BETWEEN SOIL COLOR AND HEMATITE CONTENT , 1983 .

[22]  V. Barrón,et al.  Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour , 1986 .

[23]  Peter Dietrich,et al.  Direct-Push-Technologien – Effiziente Untersuchungsmethoden für die Untergrunderkundung , 2011 .

[24]  A. Singer,et al.  A digital camera as a tool to measure colour indices and related properties of sandy soils in semi‐arid environments , 2005 .

[25]  V. Tomović,et al.  A joined rock magnetic and colorimetric perspective on the Late Pleistocene climate of Orlovat loess site (Northern Serbia) , 2014 .

[26]  Gordon R. J. Cooper,et al.  Blocking geophysical borehole log data using the continuous wavelet transform , 2009 .

[27]  Jasbinder S. Sanghera,et al.  Fiber optic IR reflectance sensor for the cone penetrometer , 1995, Other Conferences.

[28]  S. Lieberman Direct‐push, fluorescence‐based sensor systems for in situ measurement of petroleum hydrocarbons in soils , 1998 .

[29]  E. Ben-Dor,et al.  A Novel Method of Classifying Soil Profiles in the Field using Optical Means , 2008 .

[30]  Photographic Documentation of Soil Color Change on Exposure to Air , 2012 .

[31]  R. V. Rossel,et al.  Colour space models for soil science , 2006 .

[32]  Jan Adamowski,et al.  Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008) , 2012 .

[33]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[34]  P. Gaillot,et al.  Did you smooth your well logs the right way for seismic interpretation , 2011 .

[35]  E. Eckmeier,et al.  Pedogenetic processes and pedostratigraphy of the Quaternary on the Balearic Islands and in the Granada Basin, Spain , 2015 .

[36]  E. Eckmeier,et al.  Black carbon contributes to organic matter in young soils in the Morteratsch proglacial area (Switzerland) , 2012 .

[37]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[38]  J. Barrow,et al.  The Resonant Sonic Drilling Method: An Innovative Technology for Environmental Restoration Programs , 1994 .

[39]  J. Schanda,et al.  Colorimetry : understanding the CIE system , 2007 .

[40]  Peter Dietrich,et al.  Field comparison of selected methods for vertical soil water content profiling , 2013 .

[41]  E. Eckmeier,et al.  Introducing an improved multi-proxy approach for paleoenvironmental reconstruction of loess–paleosol archives applied on the Late Pleistocene Nussloch sequence (SW Germany) , 2014 .

[42]  S. Lieberman,et al.  Cone penetrometer deployable in situ video microscope for characterizing sub-surface soil properties , 1998 .

[43]  VienkenThomas,et al.  Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization - a field study , 2012 .

[44]  Timothy Matney,et al.  In situ shallow subsurface reflectance spectroscopy of archaeological soils and features: a case-study of two Native American settlement sites in Kansas , 2014 .

[45]  N. Lazarovitch,et al.  Characterization of Water Infiltration and Redistribution for Two‐Dimensional Soil Profiles by Moment Analyses , 2010 .

[46]  A C Meigh,et al.  Cone Penetration Testing: Methods and Interpretation , 1989 .

[47]  Bieng-Zih Hsieh,et al.  Identification of stratigraphic formation interfaces using wavelet and Fourier transforms , 2008, Comput. Geosci..

[48]  Magnus Persson,et al.  Estimating Surface Soil Moisture from Soil Color Using Image Analysis , 2005 .

[49]  David M. Nielsen,et al.  Use of Direct-Push Technologies in Environmental Site Characterization and Ground-Water Monitoring , 2005 .

[50]  C. Sloss,et al.  Coring and augering , 2013 .

[51]  J. A. Shields,et al.  MEASUREMENT OF SOIL COLOR , 1966 .

[52]  Nirmal K. Bose,et al.  Properties determining choice of mother wavelet , 2005 .

[53]  U. Schwertmann,et al.  Color Identification of Iron Oxides and Hydroxysulfates , 1999 .

[54]  R. V. Rossel,et al.  In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy , 2009 .

[55]  Alberto J. Palma,et al.  Using the mobile phone as Munsell soil-colour sensor: An experiment under controlled illumination conditions , 2013 .

[56]  Skye Wills,et al.  Prediction of Soil Organic Carbon Content Using Field and Laboratory Measurements of Soil Color , 2007 .

[57]  N. Flay,et al.  Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil , 1997 .