Review on bioleaching of uranium from low-grade ore

본 총설은 광석으로부터 우라늄의 미생물 침출시 사용하는 Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans 그리고 Leptospirillum ferrooxidans 등에 역할과 침출반응에 관하여 기술하였다. 미생물에 의한 우라늄의 침출반응은 박테리아가 우라늄 광석과 직접 반응하기 보다는 박테리아가 $U^{4+}$ 를 산화시키는데 필요한 $Fe^{3+}$ 를 공급하고, $Fe^{3+}$ 가 우라늄 광석과 반응하는 간접반응기구(indirect mechanism)에 의하여 일어난다. 건식제련법과 같은 전통적인 금속회수 공정에 비하여 환경친화적이고 경제적인 장점 때문에 저품위 광물자원으로부터 유기금속을 회수하는데 미생물 제련법이 널리 활용되고 있다. 현재 우라늄은 heap, dump 그리고 in situ를 이용한 미생물 침출법으로 회수되고 있다. Bioheap의 공기 투입량, 교반반응용기의 디자인 및 조업 개선 분야에서 기술개발이 지속적으로 이루어졌으며 최근에는 미생물 침출반응에 투입된 박테리아의 특성 개선 및 균주수를 제어하기 위한 molecular biology 분야에서 활발한 연구가 진행되고 있다. 【This review describes the involvement of different microorganisms for the recovery of uranium from the ore. Mainly Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching of uranium generally follows indirect mechanism in which bacteria provide the ferric iron required to oxidize $U^{4+}$ . Commercial applications of bioleaching have been incorporated for extracting valuable metals, due to its favorable process economics and reduced environmental problems compared to conventional metal recovery processes such as smelting. At present the uranium is recovered through main bioleaching techniques employed by heap, dump and in situ leaching. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.】

[1]  N. Pradhan,et al.  Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans. , 2006, Bioresource technology.

[2]  Kyung-Suk Cho,et al.  Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans , 2005 .

[3]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[4]  O. W. Purvis,et al.  Uranium Biosorption by the Lichen Trapelia involuta at a Uranium Mine , 2003 .

[5]  M. Hussein,et al.  Fungal Leaching of Uranium from its Geological Ores in Alloga Area, West Central Sinai, Egypt , 2002 .

[6]  I. Ignatiadis,et al.  Mechanistic study of the pyrite–solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques , 2001 .

[7]  W. Sand,et al.  (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching , 2001 .

[8]  T. Vargas,et al.  Chemical and electrochemical basis of bioleaching processes , 2001 .

[9]  K. Popa,et al.  Bioleaching of UO22+ Ions from Poor Uranium Ores by Means of Cyanobacteria , 2000 .

[10]  H. Hippe Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). , 2000, International journal of systematic and evolutionary microbiology.

[11]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[12]  O. Tuovinen,et al.  Dissolution of uraninite in acid solutions , 1998 .

[13]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[14]  R. Bachofen,et al.  Metal Leaching of Fly Ash from Municipal Waste Incineration by Aspergillus niger , 1996 .

[15]  Douglas E. Rawlings,et al.  Mining with Microbes , 1995, Bio/Technology.

[16]  G. Gadd,et al.  Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance , 1995 .

[17]  A. Ballester,et al.  A study of the bioleaching of a Spanish uranium ore. Part III: Column experiments , 1995 .

[18]  M. Blazquez,et al.  A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores , 1995 .

[19]  M. Blazquez,et al.  A study of the bioleaching of a Spanish uranium ore. Part II: Orbital shaker experiments , 1995 .

[20]  W. Burgstaller,et al.  High-yield production of oxalic acid for metal leaching processes by Aspergillus niger. , 1994, FEMS microbiology letters.

[21]  G. Olson Microbial oxidation of gold ores and gold bioleaching , 1994 .

[22]  A. Ballester,et al.  Bioleaching of a Spanish uranium ore , 1993 .

[23]  O. Júnior Bacterial leaching of uranium ore from Figueira—PR, Brazil, at laboratory and pilot scale , 1993 .

[24]  W. Sand,et al.  Evaluation of Leptospirillum ferrooxidans for Leaching , 1992, Applied and environmental microbiology.

[25]  J. Pronk,et al.  Growth of Thiobacillus ferrooxidans on Formic Acid , 1991, Applied and environmental microbiology.

[26]  A. J. Francis,et al.  Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes , 1990, Experientia.

[27]  T. Oishi,et al.  Kinetic study on the reaction of solid silica with molten matte , 1990 .

[28]  R. Mccready,et al.  Nutrient requirements for the in-place leaching of uranium by Thiobacillus ferrooxidans , 1986 .

[29]  T. Sugio,et al.  Role of a Ferric Ion-Reducing System in Sulfur Oxidation of Thiobacillus ferrooxidans , 1985, Applied and environmental microbiology.

[30]  D. Wadden,et al.  The In-Place Leaching of Uranium at Denison Mines , 1985 .

[31]  J. Hsu,et al.  Effect of pH, iron concentration, and pulp density on the solubilization of uranium from ore material in chemical and microbiological acid leach solutions: Regression equation and confidence band analysis , 1984 .

[32]  O. Tuovinen,et al.  Kinetics of uranous iron and ferrous iron oxidation by thiobacillus ferrooxidans , 1983, Archives of Microbiology.

[33]  O. Tuovinen,et al.  Kinetics of uranous ion and ferrous iron oxidation byThiobacillus ferrooxidans , 1982, Archives of Microbiology.

[34]  O. Tuovinen,et al.  Uranous ion oxidation and carbon dioxide fixation byThiobacillus ferrooxidans , 1982, Archives of Microbiology.

[35]  A. E. Torma,et al.  Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans , 1977, Biotechnology and bioengineering.

[36]  O. Tuovinen,et al.  Studies on the growth of Thiobacillus ferrooxidans. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. , 1974, Archiv fur Mikrobiologie.

[37]  K. Temple,et al.  THE AUTOTROPHIC OXIDATION OF IRON BY A NEW BACTERIUM: THIOBACILLUS FERROOXIDANS , 1951, Journal of bacteriology.

[38]  A R Colmer,et al.  The Role of Microorganisms in Acid Mine Drainage: A Preliminary Report. , 1947, Science.

[39]  S. Waksman,et al.  MICROÖRGANISMS CONCERNED IN THE OXIDATION OF SULFUR IN THE SOIL II. THIOBACILLUS THIOOXIDANS, A NEW SULFUR-OXIDIZING ORGANISM ISOLATED FROM THE SOIL , 1922, Journal of bacteriology.

[40]  B. Mishra,et al.  Microbial recovery of uranium using native fungal strains , 2009 .

[41]  N. Pradhan,et al.  Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains , 2007 .

[42]  K. Stetter,et al.  Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer , 2004, Archives of Microbiology.

[43]  G. Gadd Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. , 1999, Advances in microbial physiology.

[44]  W. Burgstaller,et al.  Leaching of metals with fungi , 1993 .

[45]  O. Tuovinen,et al.  Oxygen uptake coupled with uranous sulfate oxidation by thiobacillus ferrooxidans and T. Acidophilus , 1981 .