The duality of computation
暂无分享,去创建一个
[1] Nobuko Yoshida,et al. Game-Theoretic Analysis of Call-by-Value Computation , 1997, Theor. Comput. Sci..
[2] C.-H. Luke Ong,et al. A Curry-Howard foundation for functional computation with control , 1997, POPL '97.
[3] Ichiro Ogata,et al. Constructive Classical Logic as CPS-Calculus , 2000, Int. J. Found. Comput. Sci..
[4] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[5] Martin Hofmann,et al. Continuation models are universal for lambda-mu-calculus , 1997, LICS 1997.
[6] Val Tannen,et al. A Typed Pattern Calculus , 1996, Inf. Comput..
[7] Hugo Herbelin. Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .
[8] Hugo Herbelin,et al. Computing with Abstract Böhm Trees , 1998, Fuji International Symposium on Functional and Logic Programming.
[9] Ichiro Ogata. A CPS-Transform of Constructive Classical Logic , 1999, ASIAN.
[10] Hugo Herbelin,et al. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.
[11] Vincent Danos,et al. A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.
[12] Jean-Yves Girard,et al. On the Unity of Logic , 1993, Ann. Pure Appl. Log..
[13] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[14] Peter Selinger,et al. Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.
[15] Thomas Streicher,et al. Continuation Models Are Universal for -calculus , 1997 .
[16] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[17] René David,et al. λμ-calculus and Böhm's theorem , 2001, Journal of Symbolic Logic.
[18] HerbelinHugo,et al. The duality of computation , 2000 .
[19] Andrzej Filinski. Declarative Continuations: an Investigation of Duality in Programming Language Semantics , 1989, Category Theory and Computer Science.
[20] Vincent Danos,et al. LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication , 1995 .
[21] Chetan R. Murthy. A computational analysis of Girard's translation and LC , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.
[22] Jean-Louis Krivine,et al. Typed lambda-calculus in classical Zermelo-Frænkel set theory , 2001, Arch. Math. Log..
[23] Christian Urban,et al. Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.
[24] Philippe de Groote,et al. On the Relation between the Lambda-Mu-Calculus and the Syntactic Theory of Sequential Control , 1994, LPAR.
[25] M. Felleisen,et al. Reasoning about programs in continuation-passing style , 1993 .
[26] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[27] Gerhard Gentzen,et al. Investigations into Logical Deduction , 1970 .