Automated hyperspectral vegetation index retrieval from multiple correlation matrices with hypercor

(Accepted: photogrammetric engineering & remote sensing, forthcoming August 2014) Helge Aasen; Martin Leon Gnyp; Yuxin Miao; Georg Bareth 1 Institute of Geography, University of Cologne, Albertus.Magnus-Platz, 50923 Cologne, Germany (helge.aasen, mgnyp1, g.bareth @uni-koeln.de). 2 College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China (ymiao2007@gmail.com). 3 International Center for Agro-Informatics and Sustainable Development (www.icasd.org). * Corresponding author

[1]  Prasad S. Thenkabail,et al.  Nondestructive Estimation of Foliar Pigment (Chlorophylls, Carotenoids, and Anthocyanins) Contents: Evaluating a Semianalytical Three-Band Model , 2016 .

[2]  Elizabeth M. Middleton,et al.  Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion/EO-1 Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  C. Milesi,et al.  Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? , 2012 .

[4]  N. Fageria,et al.  LOWLAND RICE GROWTH AND DEVELOPMENT AND NUTRIENT UPTAKE DURING GROWTH CYCLE , 2013 .

[5]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[6]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[7]  Tim R. McVicar,et al.  Current and potential uses of optical remote sensing in rice-based irrigation systems: a review , 2004 .

[8]  C. Justice,et al.  Development of vegetation and soil indices for MODIS-EOS , 1994 .

[9]  Fumin Wang,et al.  Relationship between Narrow Band Normalized Deference Vegetation Index and Rice Agronomic Variables , 2004 .

[10]  Timothy J. Malthus,et al.  The Fields of View and Directional Response Functions of Two Field Spectroradiometers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[11]  L. Plümer,et al.  Development of spectral indices for detecting and identifying plant diseases , 2013 .

[12]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[13]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[14]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[15]  A. Huete,et al.  Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission , 2013 .

[16]  Christoph Hütt,et al.  Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[17]  Alfredo Huete,et al.  Advances in hyperspectral remote sensing of vegetation and agricultural croplands: Chapter 1 , 2011 .

[18]  J. Muller,et al.  Terrestrial remote sensing science and algorithms planned for EOS/MODIS , 1994 .

[19]  Yuxin Miao,et al.  Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn , 2008, Precision Agriculture.

[20]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[21]  Georg Bareth,et al.  Analysis of crop reflectance for estimating biomass in rice canopies at different phenological stages , 2013 .

[22]  Nigel P. Fox,et al.  Progress in Field Spectroscopy , 2006 .

[23]  Andrea Ciampalini,et al.  Two GUIs-based analysis tool for spectroradiometer data pre-processing , 2013, Earth Science Informatics.

[24]  S. Ghosh,et al.  Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data , 2007, Precision Agriculture.

[25]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[26]  H. J. Chauhan,et al.  Development of Agricultural Crops Spectral Library and Classification of Crops Using Hyperion Hyperspectral Data , 2013 .

[27]  M. Boschetti,et al.  Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry , 2009 .

[28]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[29]  Georg Bareth,et al.  Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain , 2013 .

[30]  Shanyu Huang,et al.  Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor , 2013 .

[31]  S. Ustin,et al.  Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages , 2014 .

[32]  Georg Bareth,et al.  Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages , 2010, Precision Agriculture.

[33]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[34]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[35]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[36]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[37]  Y. Miao,et al.  Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain , 2010 .

[38]  J. G. Lyon,et al.  Hyperspectral Vegetation Indices , 2016 .

[39]  Yoshiki Yamagata,et al.  Spectral Observations for Estimating the Growth and Yield of Rice , 1989 .

[40]  A. Skidmore,et al.  Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features , 2004 .

[41]  John H. Prueger,et al.  Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices , 2010, Remote. Sens..

[42]  J. G. Lyon,et al.  Hyperspectral Remote Sensing of Vegetation and Agricultural Crops: Knowledge Gain and Knowledge Gap After 40 Years of Research , 2011 .

[43]  M. Shibayama,et al.  Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass , 1989 .