Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities

[1]  Irving L. Weissman,et al.  Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem cell self-renewal , 2017, Nature.

[2]  Luke T. Dang,et al.  Surrogate Wnt agonists that phenocopy canonical Wnt/β-catenin signaling , 2017, Nature.

[3]  Francisco J. Sánchez-Rivera,et al.  A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma , 2017, Nature.

[4]  L. Tucker-Kellogg,et al.  Wnt proteins synergize to activate β-catenin signaling , 2017, Journal of Cell Science.

[5]  A. Stark,et al.  Probing the canonicity of the Wnt/Wingless signaling pathway , 2017, PLoS genetics.

[6]  J. Visvader,et al.  Derivation of a robust mouse mammary organoid system for studying tissue dynamics , 2017, Development.

[7]  J. Karp,et al.  Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. , 2017, Cell reports.

[8]  Hans Clevers,et al.  Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors , 2016, Nature Medicine.

[9]  Hans Clevers,et al.  Designer matrices for intestinal stem cell and organoid culture , 2016, Nature.

[10]  M. Eisenstein,et al.  A unique type of GSK-3 inhibitor brings new opportunities to the clinic , 2016, Science Signaling.

[11]  Jinghang Zhang,et al.  Edinburgh Research Explorer Macrophage-derived Extracellular Vesicle packaged WNTs rescue intestinal stem cells 2 and enhance survival after radiation injury , 2016 .

[12]  M. Gammons,et al.  Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled , 2016, Molecular cell.

[13]  R. Nusse,et al.  Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. , 2016, Developmental cell.

[14]  A. Grauer,et al.  Romosozumab Treatment in Postmenopausal Women with Osteoporosis. , 2016, The New England journal of medicine.

[15]  J. Vincent,et al.  Exosomes in developmental signalling , 2016, Development.

[16]  Zhongsheng Sun,et al.  Mutations in WNT10B Are Identified in Individuals with Oligodontia. , 2016, American journal of human genetics.

[17]  Elisa de Stanchina,et al.  Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT , 2016, Cell.

[18]  R. Nusse,et al.  Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling , 2016, Proceedings of the National Academy of Sciences.

[19]  H. Clevers,et al.  Visualization of a short-range Wnt gradient in the intestinal stem-cell niche , 2016, Nature.

[20]  S. Durinck,et al.  Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function , 2015, Nature.

[21]  B. Giepmans,et al.  Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals , 2015, Stem cell reports.

[22]  N Harmston,et al.  Wnt addiction of genetically defined cancers reversed by PORCN inhibition , 2015, Oncogene.

[23]  H. Mollenkopf,et al.  The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids , 2015, Nature Communications.

[24]  S. Linnarsson,et al.  Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis , 2015, Stem Cell Reports.

[25]  M. Maurice,et al.  Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia. , 2015, American journal of human genetics.

[26]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[27]  M. Peifer,et al.  Author response: A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction , 2015 .

[28]  M. Grinstein,et al.  Wnt signaling orients the proximal-distal axis of chick kidney nephrons , 2015, Development.

[29]  E. Jones,et al.  Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan , 2015, eLife.

[30]  R. Nusse,et al.  Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver , 2015, Nature.

[31]  H. Clevers,et al.  Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia , 2015, Proceedings of the National Academy of Sciences.

[32]  Raffaella Zamponi,et al.  Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. , 2015, Molecular cell.

[33]  L. Lum,et al.  Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells , 2015, Molecular and Cellular Biology.

[34]  T. Engler,et al.  Activating the Wnt/β-Catenin Pathway for the Treatment of Melanoma – Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3 , 2015, PloS one.

[35]  B. V. van Bon,et al.  DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome. , 2015, American journal of human genetics.

[36]  E. Jones,et al.  Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , 2015, Developmental cell.

[37]  G. Schulte,et al.  Systematic Mapping of WNT-FZD Protein Interactions Reveals Functional Selectivity by Distinct WNT-FZD Pairs* , 2015, The Journal of Biological Chemistry.

[38]  M. Spector,et al.  Organoid Models of Human and Mouse Ductal Pancreatic Cancer , 2015, Cell.

[39]  Hans Clevers,et al.  Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver , 2015, Cell.

[40]  S. Seaman,et al.  GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. , 2015, Cell reports.

[41]  Claude Sinner,et al.  Filopodia-based Wnt transport during vertebrate tissue patterning , 2015, Nature Communications.

[42]  Hans Clevers,et al.  In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. , 2015, Gastroenterology.

[43]  G. Schulte,et al.  Receptor binding and functional selectivity of WNTs , 2015 .

[44]  Brian C Lewandowski,et al.  Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo , 2014, Proceedings of the National Academy of Sciences.

[45]  J. Nathans,et al.  Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. , 2014, Developmental cell.

[46]  E. Lagasse,et al.  Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. , 2014, Cell reports.

[47]  R. Coppes,et al.  University of Groningen Purification and Ex Vivo Expansion of Fully Functional Salivary Gland Stem Cells , 2014 .

[48]  E. Cuppen,et al.  Identification of Multipotent Luminal Progenitor Cells in Human Prostate Organoid Cultures , 2014, Cell.

[49]  Michael Schumacher,et al.  Modeling human development and disease in pluripotent stem cell-derived gastric organoids , 2014, Nature.

[50]  K. Badani,et al.  Single luminal epithelial progenitors can generate prostate organoids in culture , 2014, Nature Cell Biology.

[51]  Tuan Zea Tan,et al.  Lgr5 marks stem/progenitor cells in ovary and tubal epithelia , 2014, Nature Cell Biology.

[52]  Giuseppe Basso,et al.  YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response , 2014, Cell.

[53]  Michael Kahn,et al.  Can we safely target the WNT pathway? , 2014, Nature Reviews Drug Discovery.

[54]  Eric Baudin,et al.  Integrated genomic characterization of adrenocortical carcinoma , 2014, Nature Genetics.

[55]  F. Bard,et al.  WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. , 2014, Developmental cell.

[56]  M. Resh,et al.  Identification of Key Residues and Regions Important for Porcupine-mediated Wnt Acylation* , 2014, The Journal of Biological Chemistry.

[57]  C. Niehrs,et al.  Polarized Wnt signaling regulates ectodermal cell fate in Xenopus. , 2014, Developmental cell.

[58]  David A. Bennett,et al.  REST and Stress Resistance in Aging and Alzheimer’s Disease , 2014, Nature.

[59]  W. Weis,et al.  Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6 , 2014, eLife.

[60]  W. de Lau,et al.  The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength , 2014, Genes & development.

[61]  S. G. Clark,et al.  The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans , 2014, Development.

[62]  E. Cuppen,et al.  Wnt‐induced transcriptional activation is exclusively mediated by TCF/LEF , 2014, The EMBO journal.

[63]  C. Alexandre,et al.  Patterning and growth control by membrane-tethered Wingless , 2013, Nature.

[64]  Ren Wenwen,et al.  単一Lgr5‐またはLgr6‐発現味覚幹/前駆細胞はex vivoで味蕾細胞を生み出す , 2014 .

[65]  Allon M. Klein,et al.  Interfollicular Epidermal Stem Cells Self-Renew via Autocrine Wnt Signaling , 2013, Science.

[66]  J. Yates,et al.  α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes , 2013, Genes & development.

[67]  Chen Chen,et al.  Structure and function of Norrin in assembly and activation of a Frizzled 4–Lrp5/6 complex , 2013, Genes & development.

[68]  M. Resh,et al.  Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. , 2013, Cell reports.

[69]  Hans Clevers,et al.  Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis , 2013, The EMBO journal.

[70]  Y. Ohkawa,et al.  Wnt signaling regulates left-right axis formation in the node of mouse embryos. , 2013, Developmental biology.

[71]  M. Mlodzik,et al.  Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila , 2013, Nature Cell Biology.

[72]  R. Nusse,et al.  structural Studies of Wnts and identification of an LRP6 binding site. , 2013, Structure.

[73]  Piul S. Rabbani,et al.  Wnt activation in nail epithelium couples nail growth to digit regeneration , 2013, Nature.

[74]  Sung-Eun Kim,et al.  Wnt Stabilization of β-Catenin Reveals Principles for Morphogen Receptor-Scaffold Assemblies , 2013, Science.

[75]  S. Krauss,et al.  A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. , 2013, Cancer research.

[76]  R. Margolskee,et al.  Lgr5‐EGFP Marks Taste Bud Stem/Progenitor Cells in Posterior Tongue , 2013, Stem cells.

[77]  Daniel F. Gudbjartsson,et al.  Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits , 2013, Nature.

[78]  Emily H Turner,et al.  WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. , 2013, American journal of human genetics.

[79]  A. Wynshaw-Boris,et al.  Phosphorylation of Dishevelled by Protein Kinase RIPK4 Regulates Wnt Signaling , 2013, Science.

[80]  E. Betzig,et al.  A Localized Wnt Signal Orients Asymmetric Stem Cell Division in Vitro , 2013, Science.

[81]  Christof Niehrs,et al.  Secreted and transmembrane wnt inhibitors and activators. , 2013, Cold Spring Harbor perspectives in biology.

[82]  Hans Clevers,et al.  In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration , 2013, Nature.

[83]  Roland Baron,et al.  WNT signaling in bone homeostasis and disease: from human mutations to treatments , 2013, Nature Medicine.

[84]  Ophir D Klein,et al.  Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. , 2013, Cell reports.

[85]  R. Hannoush,et al.  Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. , 2013, Cancer research.

[86]  M. Genovese,et al.  Effects of sclerostin antibody on healing of a non‐critical size femoral bone defect , 2013, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[87]  Allon M Klein,et al.  Kinetic Responses of β-Catenin Specify the Sites of Wnt Control , 2012, Science.

[88]  C. Niehrs The complex world of WNT receptor signalling , 2012, Nature Reviews Molecular Cell Biology.

[89]  J. Nathans,et al.  Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes , 2012, Development.

[90]  H. Clevers,et al.  Developmental stage‐specific contribution of LGR5+ cells to basal and luminal epithelial lineages in the postnatal mammary gland , 2012, The Journal of pathology.

[91]  Jordan C. Ciciliano,et al.  Corrigendum: RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis , 2012, Nature.

[92]  Julia Christina Gross,et al.  Active Wnt proteins are secreted on exosomes , 2012, Nature Cell Biology.

[93]  H. Clevers,et al.  Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. , 2012, Cell reports.

[94]  R. Nusse,et al.  Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. , 2012, Cell stem cell.

[95]  M. Waterman,et al.  A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. , 2012, Differentiation; research in biological diversity.

[96]  H. Clevers,et al.  Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors , 2012, Nature.

[97]  Melanie A. Huntley,et al.  Recurrent R-spondin fusions in colon cancer , 2012, Nature.

[98]  A. Edge,et al.  Wnt-Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea , 2012, The Journal of Neuroscience.

[99]  K. Garcia,et al.  Structural Basis of Wnt Recognition by Frizzled , 2012, Science.

[100]  David M. Evans,et al.  WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk , 2012, PLoS genetics.

[101]  Christof Niehrs,et al.  Mitotic and mitogenic Wnt signalling , 2012, The EMBO journal.

[102]  Hans Clevers,et al.  Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex , 2012, Cell.

[103]  Hans Clevers,et al.  Wnt/β-Catenin Signaling and Disease , 2012, Cell.

[104]  H. Ruffner,et al.  ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner , 2012, Nature.

[105]  Eric J. Liaw,et al.  Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea , 2012, Proceedings of the National Academy of Sciences.

[106]  S. Ichinose,et al.  Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell , 2012, Nature Medicine.

[107]  Britta A. M. Bouwman,et al.  Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled , 2012, Proceedings of the National Academy of Sciences.

[108]  M. Greenberg,et al.  Wnt5a–Ror–Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis , 2012, Proceedings of the National Academy of Sciences.

[109]  K. Basler,et al.  Porcupine-mediated lipidation is required for Wnt recognition by Wls. , 2012, Developmental biology.

[110]  H. Sawa Control of cell polarity and asymmetric division in C. elegans. , 2012, Current topics in developmental biology.

[111]  A. E. Wakil TOWARDS AN INTEGRATED VIEW OF Wnt SIGNALING IN MOUSE ADRENOCORTICAL FUNCTIONAL ZONATION , 2012 .

[112]  A. Maitra,et al.  Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways , 2011, Proceedings of the National Academy of Sciences.

[113]  Hans Clevers,et al.  Isolation and in vitro expansion of human colonic stem cells , 2011, Nature Medicine.

[114]  C. Cruciat,et al.  LGR4 and LGR5 are R‐spondin receptors mediating Wnt/β‐catenin and Wnt/PCP signalling , 2011, EMBO reports.

[115]  T. Blauwkamp,et al.  Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells , 2011, Nature Cell Biology.

[116]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[117]  A. Spradling,et al.  Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. , 2011, Developmental cell.

[118]  Q. Lin,et al.  R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling , 2011, Proceedings of the National Academy of Sciences.

[119]  M. Peifer,et al.  Deconstructing the ßcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling , 2011, Molecular biology of the cell.

[120]  Hans Clevers,et al.  The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. , 2011, Cell stem cell.

[121]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[122]  Marc Fiedler,et al.  Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin , 2011, Proceedings of the National Academy of Sciences.

[123]  Elizabeth E. Hoskins,et al.  Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro , 2010, Nature.

[124]  R. Nusse,et al.  Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. , 2010, Cell stem cell.

[125]  Louis Vermeulen,et al.  Wnt activity defines colon cancer stem cells and is regulated by the microenvironment , 2010, Nature Cell Biology.

[126]  H. Clevers,et al.  Lgr6 Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin , 2010, Science.

[127]  D. Mackey,et al.  Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. , 2010, American journal of human genetics.

[128]  C. Cruciat,et al.  Requirement of Prorenin Receptor and Vacuolar H+-ATPase–Mediated Acidification for Wnt Signaling , 2010, Science.

[129]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[130]  H. Brunner,et al.  WNT5A mutations in patients with autosomal dominant Robinow syndrome , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[131]  Lea Goentoro,et al.  Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. , 2009, Molecular cell.

[132]  D. Rice,et al.  TSPAN12 Regulates Retinal Vascular Development by Promoting Norrin- but Not Wnt-Induced FZD4/β-Catenin Signaling , 2009, Cell.

[133]  Bulent Ataman,et al.  Trans-Synaptic Transmission of Vesicular Wnt Signals through Evi/Wntless , 2009, Cell.

[134]  Marc W. Kirschner,et al.  Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling , 2009, Nature.

[135]  L. Lum,et al.  Structure-activity relationship studies of small-molecule inhibitors of Wnt response. , 2009, Bioorganic & medicinal chemistry letters.

[136]  Marc Ladanyi,et al.  WNT/TCF Signaling through LEF1 and HOXB9 Mediates Lung Adenocarcinoma Metastasis , 2009, Cell.

[137]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[138]  Lawrence Lum,et al.  Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer , 2008, Nature chemical biology.

[139]  J. Behrens,et al.  Beta-catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. , 2008, Human molecular genetics.

[140]  C. Thaller,et al.  Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis , 2009, Nature Genetics.

[141]  Hans Clevers,et al.  Lgr5 marks cycling, yet long-lived, hair follicle stem cells , 2008, Nature Genetics.

[142]  Jennifer Nichols,et al.  Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition , 2008, PLoS biology.

[143]  B. Doble,et al.  The ground state of embryonic stem cell self-renewal , 2008, Nature.

[144]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[145]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[146]  E. Chouery,et al.  Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. , 2007, American journal of human genetics.

[147]  Yoshiki Higuchi,et al.  The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization , 2007, Nature Structural &Molecular Biology.

[148]  P. Schultz,et al.  Small-molecule synergist of the Wnt/β-catenin signaling pathway , 2007, Proceedings of the National Academy of Sciences.

[149]  Cu Nguyen,et al.  Wnt/β-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency , 2007, Proceedings of the National Academy of Sciences.

[150]  P. Schultz,et al.  Small-molecule synergist of the Wnt/beta-catenin signaling pathway. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[151]  N. Ueno,et al.  Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. , 2006, Developmental cell.

[152]  Scott Saunders,et al.  Bone Density Ligand, Sclerostin, Directly Interacts With LRP5 but Not LRP5G171V to Modulate Wnt Activity , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[153]  K. Basler,et al.  Transcription under the Control of Nuclear Arm/β-Catenin , 2006, Current Biology.

[154]  Michael Boutros,et al.  Secretion of Wnt Ligands Requires Evi, a Conserved Transmembrane Protein , 2006, Cell.

[155]  K. Basler,et al.  Wntless, a Conserved Membrane Protein Dedicated to the Secretion of Wnt Proteins from Signaling Cells , 2006, Cell.

[156]  K. Basler,et al.  Parafibromin/Hyrax Activates Wnt/Wg Target Gene Transcription by Direct Association with β-catenin/Armadillo , 2006, Cell.

[157]  B. Goldstein,et al.  Wnt signals can function as positional cues in establishing cell polarity. , 2006, Developmental cell.

[158]  K. Basler,et al.  Transcription under the control of nuclear Arm/beta-catenin. , 2006, Current biology : CB.

[159]  M. Bienz,et al.  The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles , 2005, Journal of Cell Science.

[160]  Takeshi Oshima,et al.  Mitogenic Influence of Human R-Spondin1 on the Intestinal Epithelium , 2005, Science.

[161]  M. Martindale,et al.  Unexpected complexity of the Wnt gene family in a sea anemone , 2005, Nature.

[162]  C. Niehrs,et al.  R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , 2004, Developmental cell.

[163]  Hong Ma,et al.  A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[164]  I. Thesleff,et al.  Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. , 2004, American journal of human genetics.

[165]  Michael J Parker,et al.  Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. , 2004, American journal of human genetics.

[166]  J. Nathans,et al.  Vascular Development in the Retina and Inner Ear Control by Norrin and Frizzled-4, a High-Affinity Ligand-Receptor Pair , 2004, Cell.

[167]  P. Greengard,et al.  Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor , 2004, Nature Medicine.

[168]  I. Weissman,et al.  Wnt proteins are lipid-modified and can act as stem cell growth factors , 2003, Nature.

[169]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[170]  M. Hayden,et al.  Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy , 2002, Nature Genetics.

[171]  S. Millar,et al.  WNT signals are required for the initiation of hair follicle development. , 2002, Developmental cell.

[172]  Xi He,et al.  Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism , 2002, Cell.

[173]  Hans Clevers,et al.  Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/Axin2 in Colorectal and Liver Tumors , 2002, Molecular and Cellular Biology.

[174]  Mark L. Johnson,et al.  A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. , 2002, American journal of human genetics.

[175]  Mark L. Johnson,et al.  High bone density due to a mutation in LDL-receptor-related protein 5. , 2002, The New England journal of medicine.

[176]  A. Mitchell Sex determination: ... and differentiation , 2002, Nature Reviews Molecular Cell Biology.

[177]  Miikka Vikkula,et al.  LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.

[178]  D. Galas,et al.  Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. , 2001, American journal of human genetics.

[179]  M Dioszegi,et al.  Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). , 2001, Human molecular genetics.

[180]  J W Yates,et al.  Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. , 2000, Chemistry & biology.

[181]  Han G. Brunner,et al.  Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome , 2000, Nature Genetics.

[182]  Hendrik C. Korswagen,et al.  Distinct β-catenins mediate adhesion and signalling functions in C. elegans , 2000, Nature.

[183]  Yusuke Nakamura,et al.  AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1 , 2000, Nature Genetics.

[184]  David I. Smith,et al.  Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling (vol 26, pg 146, 2000) , 2000 .

[185]  H C Clevers,et al.  Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. , 2000, Nature.

[186]  E. Fuchs,et al.  Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. , 1999, Development.

[187]  M. Kitagawa,et al.  An F‐box protein, FWD1, mediates ubiquitin‐dependent proteolysis of β‐catenin , 1999, The EMBO journal.

[188]  J. Nathans,et al.  Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[189]  Hans Clevers,et al.  The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors , 1998, Nature.

[190]  Hans Clevers,et al.  Drosophila Tcf and Groucho interact to repress Wingless signalling activity , 1998, Nature.

[191]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[192]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[193]  Paul Polakis,et al.  Stabilization of β-Catenin by Genetic Defects in Melanoma Cell Lines , 1997, Science.

[194]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[195]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[196]  Hans Clevers,et al.  Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF , 1997, Cell.

[197]  P. Robbins,et al.  Stabilization of beta-catenin by genetic defects in melanoma cell lines. , 1997, Science.

[198]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[199]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[200]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[201]  Jeremy Nathans,et al.  A new member of the frizzled family from Drosophila functions as a Wingless receptor , 1996, Nature.

[202]  Paul Polakis,et al.  Binding of GSK3β to the APC-β-Catenin Complex and Regulation of Complex Assembly , 1996, Science.

[203]  P. Polakis,et al.  Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. , 1996, Science.

[204]  R Grosschedl,et al.  Functional interaction of beta-catenin with the transcription factor LEF-1. , 1996, Nature.

[205]  A. McMahon,et al.  Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4 , 1994, Nature.

[206]  E. Wieschaus,et al.  The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties , 1992, The Journal of cell biology.

[207]  A. Joyner,et al.  The midbrain-hindbrain phenotype of Wnt-1− Wnt-1− mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum , 1992, Cell.

[208]  K. Kinzler,et al.  Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. , 1991, Science.

[209]  K. Kinzler,et al.  Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. , 1991, Science.

[210]  Harold E. Varmus,et al.  Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome , 1982, Cell.

[211]  C. P. Leblond,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. , 1974, The American journal of anatomy.

[212]  C. P. Leblond,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. , 1974, The American journal of anatomy.

[213]  J. Paneth Ueber die secernirenden Zellen des Dünndarm-Epithels , 1887 .