ViPR: an open bioinformatics database and analysis resource for virology research

The Virus Pathogen Database and Analysis Resource (ViPR, www.ViPRbrc.org) is an integrated repository of data and analysis tools for multiple virus families, supported by the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers (BRC) program. ViPR contains information for human pathogenic viruses belonging to the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and Togaviridae families, with plans to support additional virus families in the future. ViPR captures various types of information, including sequence records, gene and protein annotations, 3D protein structures, immune epitope locations, clinical and surveillance metadata and novel data derived from comparative genomics analysis. Analytical and visualization tools for metadata-driven statistical sequence analysis, multiple sequence alignment, phylogenetic tree construction, BLAST comparison and sequence variation determination are also provided. Data filtering and analysis workflows can be combined and the results saved in personal ‘Workbenches’ for future use. ViPR tools and data are available without charge as a service to the virology research community to help facilitate the development of diagnostics, prophylactics and therapeutics for priority pathogens and other viruses.

[1]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[2]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[3]  D. Nash Outbreak of West Nile-Like Viral Encephalitis -- New York, 1999 , 1999 .

[4]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[5]  D. Ha,et al.  Dengue epidemic in southern Vietnam, 1998. , 2000, Emerging infectious diseases.

[6]  Sean R. Eddy,et al.  ATV: display and manipulation of annotated phylogenetic , 2001, Bioinform..

[7]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[8]  Olivier Gascuel,et al.  Fast and Accurate Phylogeny Reconstruction Algorithms Based on the Minimum-Evolution Principle , 2002, WABI.

[9]  From the Centers for Disease Control and Prevention. Severe acute respiratory syndrome--Taiwan, 2003. , 2003, JAMA.

[10]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[11]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[12]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[13]  J. Gerberding,et al.  Severe acute respiratory syndrome--Taiwan, 2003. , 2003, MMWR. Morbidity and mortality weekly report.

[14]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[15]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[16]  Detlef D. Leipe,et al.  National Center for Biotechnology Information Viral Genomes Project , 2004, Journal of Virology.

[17]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[18]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[19]  Chris Upton,et al.  Poxvirus Bioinformatics Resource Center: a comprehensive Poxviridae informational and analytical resource , 2004, Nucleic Acids Res..

[20]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[21]  Vasily Tcherepanov,et al.  Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome , 2006, BMC Genomics.

[22]  E. Holmes,et al.  Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. , 2006, The Journal of general virology.

[23]  Rick L. Stevens,et al.  National Institute of Allergy and Infectious Diseases Bioinformatics Resource Centers: New Assets for Pathogen Informatics , 2007, Infection and Immunity.

[24]  Morten Nielsen,et al.  Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction , 2007, BMC Bioinformatics.

[25]  Christopher N. Larsen,et al.  BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence , 2007, Nucleic Acids Res..

[26]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[27]  R. Rabadán,et al.  Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. , 2009, The New England journal of medicine.

[28]  Christian M. Zmasek,et al.  phyloXML: XML for evolutionary biology and comparative genomics , 2009, BMC Bioinformatics.

[29]  Richard H. Scheuermann,et al.  Departments of Pathology and , 2022 .

[30]  Robert M. Hanson,et al.  Jmol – a paradigm shift in crystallographic visualization , 2010 .

[31]  A. Tanuri,et al.  Two Lineages of Dengue Virus Type 2, Brazil , 2010, Emerging infectious diseases.

[32]  Alessandro Sette,et al.  The Immune Epitope Database 2.0 , 2009, Nucleic Acids Res..

[33]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[34]  R. Striker,et al.  Evidence for separation of HCV subtype 1a into two distinct clades , 2011, Journal of viral hepatitis.