A Characterization of lambda Definability in Categorical Models of Implicit Polymorphism
暂无分享,去创建一个
[1] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[2] John C. Mitchell,et al. Notes on Sconing and Relators , 1992, CSL.
[3] H. Läuchli. An Abstract Notion of Realizability for Which Intuitionistic Predicate Calculus is Complete , 1970 .
[4] Eugenio Moggi. A Cateogry-Theoretic Account of Program Modules , 1991, Math. Struct. Comput. Sci..
[5] John C. Reynolds,et al. Types, Abstractions, and Parametric Polymorphism, Part 2 , 1991, MFPS.
[6] Peter W. O'Hearn,et al. Kripke Logical Relations and PCF , 1995, Inf. Comput..
[7] Donald Yau,et al. Categories , 2021, 2-Dimensional Categories.
[8] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[9] Richard Statman,et al. Logical Relations and the Typed lambda-Calculus , 1985, Inf. Control..
[10] Jerzy Tiuryn,et al. A New Characterization of Lambda Definability , 1993, TLCA.
[11] R. A. G. Seely,et al. Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.
[12] Andrew M. Pitts,et al. Relational properties of recursively defined domains , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.
[13] Philip Wadler,et al. Theorems for free! , 1989, FPCA.
[14] John C. Mitchell,et al. Kripke-Style Models for Typed lambda Calculus , 1991, Ann. Pure Appl. Log..
[15] Michael E. Saks,et al. An intersection problem for finite automata , 1988, Discret. Appl. Math..
[16] A. Pitts. INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .
[17] R. E. A. Mason,et al. Information Processing 83 , 1984 .
[18] John C. Mitchell,et al. The essence of ML , 1988, POPL '88.
[19] K. Sieber. Applications of Categories in Computer Science: Reasoning about sequential functions via logical relations , 1992 .
[20] Roy L. Crole,et al. Categories for Types , 1994, Cambridge mathematical textbooks.
[21] Peter W. O'Hearn,et al. Relational parametricity and local variables , 1993, POPL '93.
[22] Eugenio Moggi,et al. A category-theoretic account of program modules , 1989, Mathematical Structures in Computer Science.
[23] John C. Mitchell,et al. Second-Order Logical Relations (Extended Abstract) , 1985, Logic of Programs.
[24] Andrew M. Pitts,et al. Polymorphism is Set Theoretic, Constructively , 1987, Category Theory and Computer Science.