A Characterization of lambda Definability in Categorical Models of Implicit Polymorphism

Lambda definability is characterized in categorical models of simply typed lambda calculus with type variables. A category-theoretic framework known as glueing or sconing is used to extend the Jung-Tiuryn (1993) characterization of lambda definability first to ccc models, and then to categorical models of the calculus with type variables.

[1]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[2]  John C. Mitchell,et al.  Notes on Sconing and Relators , 1992, CSL.

[3]  H. Läuchli An Abstract Notion of Realizability for Which Intuitionistic Predicate Calculus is Complete , 1970 .

[4]  Eugenio Moggi A Cateogry-Theoretic Account of Program Modules , 1991, Math. Struct. Comput. Sci..

[5]  John C. Reynolds,et al.  Types, Abstractions, and Parametric Polymorphism, Part 2 , 1991, MFPS.

[6]  Peter W. O'Hearn,et al.  Kripke Logical Relations and PCF , 1995, Inf. Comput..

[7]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[8]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[9]  Richard Statman,et al.  Logical Relations and the Typed lambda-Calculus , 1985, Inf. Control..

[10]  Jerzy Tiuryn,et al.  A New Characterization of Lambda Definability , 1993, TLCA.

[11]  R. A. G. Seely,et al.  Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.

[12]  Andrew M. Pitts,et al.  Relational properties of recursively defined domains , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[13]  Philip Wadler,et al.  Theorems for free! , 1989, FPCA.

[14]  John C. Mitchell,et al.  Kripke-Style Models for Typed lambda Calculus , 1991, Ann. Pure Appl. Log..

[15]  Michael E. Saks,et al.  An intersection problem for finite automata , 1988, Discret. Appl. Math..

[16]  A. Pitts INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .

[17]  R. E. A. Mason,et al.  Information Processing 83 , 1984 .

[18]  John C. Mitchell,et al.  The essence of ML , 1988, POPL '88.

[19]  K. Sieber Applications of Categories in Computer Science: Reasoning about sequential functions via logical relations , 1992 .

[20]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[21]  Peter W. O'Hearn,et al.  Relational parametricity and local variables , 1993, POPL '93.

[22]  Eugenio Moggi,et al.  A category-theoretic account of program modules , 1989, Mathematical Structures in Computer Science.

[23]  John C. Mitchell,et al.  Second-Order Logical Relations (Extended Abstract) , 1985, Logic of Programs.

[24]  Andrew M. Pitts,et al.  Polymorphism is Set Theoretic, Constructively , 1987, Category Theory and Computer Science.