CUDA-based Parallel Bi-Conjugate Gradient Matrix Solver for BioFET Simulation
暂无分享,去创建一个
We present a parallel bi-conjugate gradient (Bi-CG) matrix solver for large scale Bio-FET simulations based on recent graphics processing units (GPUs) which can realize a large-scale parallel processing with very low cost. The proposed method is focused on solving the Poisson equation in a parallel way, which requires massive computational resources in not only semiconductor simulation, but also other various fields including computational fluid dynamics and heat transfer simulations. As a result, our solver is around 30 times faster than those with traditional methods based on single core CPU systems in solving the Possion equation in a 3D FDM (Finite Difference Method) scheme. The proposed method is implemented and tested based on NVIDIA's CUDA (Compute Unified Device Architecture) environment which enables general purpose parallel processing in GPUs. Unlike other similar GPU-based approaches which apply usually 32-bit single-precision floating point arithmetics, we use 64-bit double-precision operations for better convergence. Applications on the CUDA platform are rather easy to implement but very hard to get optimized performances. In this regard, we also discuss the optimization strategy of the proposed method.