Multi-manifold clustering: A graph-constrained deep nonparametric method

Abstract For multi-manifold clustering, it is still a challenging problem on how to learn the cluster number automatically from data. This paper presents a novel nonparametric Bayesian model to cluster the multi-manifold data and estimate the number of submanifolds simultaneously. Our model firstly assumes that every submanifold is a probability distribution defined in the manifold space. Then, we approximate the manifold distribution with a deep neural network. To maintain the data similarity among data, we regularize the data generation process with a modified k-nearest neighbor graph. Though the posterior inference is hard, our model leads to a very efficient deterministic optimization algorithm, which incorporates the mean field variational inference with the Graph regularized Variational Auto-Encoder (Graph-VAE). By applying the Graph-VAE, our model exhibits another advantage of realistic image generation which overcomes the conventional clustering methods. Furthermore, we expand our proposed manifold algorithm with the Dirichlet Process Mixture (DPM) to model the real datasets, in which the manifold data and non-manifold data are coexisting. Experiments on synthetic data verify our theoretical analysis. Clustering results on motion segmentation, coil20 and 3D pedestrian show that our approach can significantly improve the clustering accuracy. The handwritten database experiment demonstrates the image generation capability.

[1]  Xulun Ye,et al.  A Nonparametric Deep Generative Model for Multimanifold Clustering , 2019, IEEE Transactions on Cybernetics.

[2]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  René Vidal,et al.  Multiframe Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[4]  Zhen Yang,et al.  The infinite Student's t-factor mixture analyzer for robust clustering and classification , 2012, Pattern Recognit..

[5]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[6]  Jiwen Lu,et al.  Discriminative Deep Metric Learning for Face and Kinship Verification , 2017, IEEE Transactions on Image Processing.

[7]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[8]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[9]  Zoubin Ghahramani,et al.  A nonparametric variable clustering model , 2012, NIPS.

[10]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[11]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[12]  Bin Fang,et al.  SHREC'14 Track: Large Scale Comprehensive 3D Shape Retrieval , 2014 .

[13]  A. Munk,et al.  INTRINSIC SHAPE ANALYSIS: GEODESIC PCA FOR RIEMANNIAN MANIFOLDS MODULO ISOMETRIC LIE GROUP ACTIONS , 2007 .

[14]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[15]  Wei-Yun Yau,et al.  Deep Subspace Clustering with Sparsity Prior , 2016, IJCAI.

[16]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[17]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[18]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[19]  Søren Hauberg,et al.  Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations , 2010, ECCV.

[20]  Oluwasanmi Koyejo,et al.  MiPPS: A Generative Model for Multi-Manifold Clustering , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[21]  Guy Rosman,et al.  The Manhattan Frame Model—Manhattan World Inference in the Space of Surface Normals , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Francesc Moreno-Noguer,et al.  3D Human Pose Tracking Priors using Geodesic Mixture Models , 2017, International Journal of Computer Vision.

[23]  Dinh Q. Phung,et al.  Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts , 2014, ICML.

[24]  Zhe Gan,et al.  Variational Autoencoder for Deep Learning of Images, Labels and Captions , 2016, NIPS.

[25]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[26]  Gang Chen,et al.  Maximum Margin Dirichlet Process Mixtures for Clustering , 2016, AAAI.

[27]  Daniel P. Robinson,et al.  Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Deng Cai,et al.  Gaussian Mixture Model with Local Consistency , 2010, AAAI.

[29]  Chun Chen,et al.  Relational co-clustering via manifold ensemble learning , 2012, CIKM.

[30]  Jiawei Han,et al.  Modeling hidden topics on document manifold , 2008, CIKM '08.

[31]  Robert Pless,et al.  Manifold clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[32]  Jiajun Wu,et al.  Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks , 2016, NIPS.

[33]  Yan Yan,et al.  $L_{1}$ -Norm Low-Rank Matrix Factorization by Variational Bayesian Method , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[34]  Y. Jiang,et al.  Spectral Clustering on Multiple Manifolds , 2011, IEEE Transactions on Neural Networks.

[35]  Xulun Ye,et al.  A Nonparametric Model for Multi-Manifold Clustering with Mixture of Gaussians and Graph Consistency , 2018, Entropy.

[36]  Jiwen Lu,et al.  Discriminative Deep Metric Learning for Face Verification in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[38]  Raquel Urtasun,et al.  A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.

[39]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[40]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[41]  Diederik P. Kingma,et al.  Stochastic Gradient VB and the Variational Auto-Encoder , 2013 .

[42]  Jonathan P. How,et al.  Efficient Global Point Cloud Alignment Using Bayesian Nonparametric Mixtures , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Francesc Moreno-Noguer,et al.  A Joint Model for 2D and 3D Pose Estimation from a Single Image , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[45]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[46]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[47]  Joydeep Ghosh,et al.  A Unified Model for Probabilistic Principal Surfaces , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Huachun Tan,et al.  Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering , 2016, IJCAI.

[49]  Jun Zhu,et al.  DP-space: Bayesian Nonparametric Subspace Clustering with Small-variance Asymptotics , 2015, ICML.

[50]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Mohamed Nadif,et al.  Multi-manifold matrix decomposition for data co-clustering , 2017, Pattern Recognit..

[52]  Hujun Bao,et al.  Laplacian Regularized Gaussian Mixture Model for Data Clustering , 2011, IEEE Transactions on Knowledge and Data Engineering.

[53]  Francesc Moreno-Noguer,et al.  Geodesic Finite Mixture Models , 2014, BMVC.

[54]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.