Optical control of internal electric fields in band gap-graded InGaN nanowires.

InGaN nanowires are suitable building blocks for many future optoelectronic devices. We show that a linear grading of the indium content along the nanowire axis from GaN to InN introduces an internal electric field evoking a photocurrent. Consistent with quantitative band structure simulations we observe a sign change in the measured photocurrent as a function of photon flux. This negative differential photocurrent opens the path to a new type of nanowire-based photodetector. We demonstrate that the photocurrent response of the nanowires is as fast as 1.5 ps.

[1]  Teri W. Odom,et al.  Near-field scanning photocurrent microscopy of a nanowire photodetector , 2005 .

[2]  G. Abstreiter,et al.  Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. , 2012, Nano letters.

[3]  Pallab Bhattacharya,et al.  InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon , 2011 .

[4]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[5]  R. R. Pelá,et al.  Accurate band gaps of AlGaN‚ InGaN‚ and AlInN alloys calculations based on LDA-1/2 approach , 2011 .

[6]  Christopher Hahn,et al.  Epitaxial growth of InGaN nanowire arrays for light emitting diodes. , 2011, ACS nano.

[7]  Lianmao Peng,et al.  Current-voltage characteristics and parameter retrieval of semiconducting nanowires , 2006 .

[8]  E. Haller,et al.  Compositional modulation in InxGa1-xN: TEM and x-ray studies , 2005 .

[9]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[10]  F. Julien,et al.  InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact. , 2014, Nano letters.

[11]  R. Klie,et al.  Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes. , 2013, Nano letters.

[12]  S. Mahajan,et al.  Compositional dependence of phase separation in InGaN layers , 2004 .

[13]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[14]  M. Eickhoff,et al.  Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires , 2014 .

[15]  Jonathan J. Wierer,et al.  Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy. , 2013, Nano letters.

[16]  Martin Eickhoff,et al.  Probing the internal electric field in GaN/AlGaN nanowire heterostructures. , 2014, Nano letters.

[17]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[18]  D. Auston,et al.  Impulse response of photoconductors in transmission lines , 1983 .

[19]  T. Schmidt,et al.  Ultrafast electron and phonon response of oriented and diameter-controlled germanium nanowire arrays. , 2014, Nano letters.

[20]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[21]  P. Lavenus,et al.  Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. , 2014, Nano letters.

[22]  Chih-Chung Yang,et al.  Surface plasmon coupling effect in an InGaN∕GaN single-quantum-well light-emitting diode , 2007 .

[23]  S. Gwo,et al.  Carrier dynamics in InN nanorod arrays , 2012, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[24]  G. Abstreiter,et al.  Ultrafast photocurrents and THz generation in single InAs‐nanowires , 2013, 1502.03782.

[25]  Photocurrent and photoconductance properties of a GaAs nanowire , 2009, 0905.3659.

[26]  R. Myers,et al.  Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells , 2012 .

[27]  Fuad E. Doany,et al.  Carrier Lifetime vs. Ion-Implantation Dose in Silicon on Sapphire , 1987, Topical Meeting on Picosecond Electronics and Optoelectronics.

[28]  X. J. Chen,et al.  Single-wire photodetectors based on InGaN/GaN radial quantum wells in GaN wires grown by catalyst-free metal-organic vapor phase epitaxy , 2011 .

[29]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[30]  P. H. Jefferson,et al.  Variation of band bending at the surface of Mg-doped InGaN: Evidence of p -type conductivity across the composition range , 2007 .

[31]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[32]  M. Mills,et al.  Molecular Beam Epitaxy of Graded-Composition InGaN Nanowires , 2013, Journal of Electronic Materials.

[33]  Michael E. Levinshtein,et al.  Carrier mobility model for GaN , 2003 .

[34]  Pierre Lefebvre,et al.  High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy , 2001 .

[35]  Gregory V Hartland,et al.  Charge carrier trapping and acoustic phonon modes in single CdTe nanowires. , 2012, ACS nano.